Electrical stimulation of bat superior colliculus influences responses of inferior collicular neurons to acoustic stimuli

1989 ◽  
Vol 497 (2) ◽  
pp. 214-222 ◽  
Author(s):  
Xinde Sun ◽  
Philip H.-S. Jen
1998 ◽  
Vol 80 (6) ◽  
pp. 3373-3379 ◽  
Author(s):  
A. K. Moschovakis ◽  
Y. Dalezios ◽  
J. Petit ◽  
A. A. Grantyn

Moschovakis, A. K., Y. Dalezios, J. Petit, and A. A. Grantyn. New mechanism that accounts for position sensitivity of saccades evoked in response to stimulation of superior colliculus. J. Neurophysiol. 80: 3373–3379, 1998. Electrical stimulation of the feline superior colliculus (SC) is known to evoke saccades whose size depends on the site stimulated (the “characteristic vector” of evoked saccades) and the initial position of the eyes. Similar stimuli were recently shown to produce slow drifts that are presumably caused by relatively direct projections of the SC onto extraocular motoneurons. Both slow and fast evoked eye movements are similarly affected by the initial position of the eyes, despite their dissimilar metrics, kinematics, and anatomic substrates. We tested the hypothesis that the position sensitivity of evoked saccades is due to the superposition of largely position-invariant saccades and position-dependent slow drifts. We show that such a mechanism can account for the fact that the position sensitivity of evoked saccades increases together with the size of their characteristic vector. Consistent with it, the position sensitivity of saccades drops considerably when the contribution of slow drifts is minimal as, for example, when there is no overlap between evoked saccades and short-duration trains of high-frequency stimuli.


2010 ◽  
Vol 11 (4) ◽  
pp. 625-640 ◽  
Author(s):  
Robert P. Carlyon ◽  
Olivier Macherey ◽  
Johan H. M. Frijns ◽  
Patrick R. Axon ◽  
Randy K. Kalkman ◽  
...  

2004 ◽  
Vol 92 (4) ◽  
pp. 2261-2273 ◽  
Author(s):  
Yoshiko Izawa ◽  
Hisao Suzuki ◽  
Yoshikazu Shinoda

To understand the neural mechanism of fixation, we investigated effects of electrical stimulation of the frontal eye field (FEF) and its vicinity on visually guided (Vsacs) and memory-guided saccades (Msacs) in trained monkeys and found that there were two types of suppression induced by the electrical stimulation: suppression of ipsilateral saccades and suppression of bilateral saccades. In this report, we characterized the properties of the suppression of bilateral Vsacs and Msacs. Stimulation of the bilateral suppression sites suppressed the initiation of both Vsacs and Msacs in all directions during and ∼50 ms after stimulation but did not affect the vector of these saccades. The suppression was stronger for ipsiversive larger saccades and contraversive smaller saccades, and saccades with initial eye positions shifted more in the saccadic direction. The most effective stimulation timing for the suppression of ipsilateral and contralateral Vsacs was ∼40–50 ms before saccade onset, indicating that the suppression occurred most likely in the superior colliculus and/or the paramedian pontine reticular formation. Suppression sites of bilateral saccades were located in the prearcuate gyrus facing the inferior arcuate sulcus where stimulation induced suppression at ≤40 μA but usually did not evoke any saccades at 80 μA and were different from those of ipsilateral saccades where stimulation evoked saccades at ≤50 μA. The bilateral suppression sites contained fixation neurons. The results suggest that fixation neurons in the bilateral suppression area of the FEF may play roles in maintaining fixation by suppressing saccades in all directions.


1998 ◽  
Vol 80 (6) ◽  
pp. 3331-3335 ◽  
Author(s):  
Marc A. Sommer ◽  
Robert H. Wurtz

Sommer, Marc A. and Robert H. Wurtz. Frontal eye field neurons orthodromically activated from the superior colliculus. J. Neurophysiol. 80: 3331–3333, 1998. Anatomical studies have shown that the frontal eye field (FEF) and superior colliculus (SC) of monkeys are reciprocally connected, and a physiological study described the signals sent from the FEF to the SC. Nothing is known, however, about the signals sent from the SC to the FEF. We physiologically identified and characterized FEF neurons that are likely to receive input from the SC. Fifty-two FEF neurons were found that were orthodromically activated by electrical stimulation of the intermediate or deeper layers of the SC. All the neurons that we tested ( n = 34) discharged in response to visual stimulation. One-half also discharged when saccadic eye movements were made. This provides the first direct evidence that the ascending pathway from SC to FEF might carry visual- and saccade-related signals. Our findings support a hypothesis that the SC and the FEF interact bidirectionally during the events leading up to saccade generation.


2002 ◽  
Vol 943 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Karine Bressand ◽  
Maurice Dematteis ◽  
Dong Ming Gao ◽  
Laurent Vercueil ◽  
Alim Louis Benabid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document