Intermittent convection: confirmation of a model for mass transfer into stratified fluid layers

1974 ◽  
Vol 29 (7) ◽  
pp. 1545-1555 ◽  
Author(s):  
E.D. Burger ◽  
L.M. Blair ◽  
J.A. Quinn
1994 ◽  
Vol 116 (2) ◽  
pp. 74-78 ◽  
Author(s):  
Y. Keren ◽  
H. Rubin ◽  
G. A. Bemporad

The practical possibilities of constructing and operating a stable flow of homogeneous and stratified fluid layers in a solar pond were investigated in this study. A laboratory setup was prepared to carry out the experimental investigations. Transient and steady-state conditions were analyzed. A numerical model was developed to simulate heat, salt, and momentum transfer in the water body. The model was calibrated with the experimental data. Density and temperature measurements along the laboratory setup showed the configuration to be stable in all of the conditions which were analyzed. These experimental results indicated that through a proper multiselective injection and withdrawal procedure it was possible to create and control the double-diffusion stratified fluid layers, which characterizes the advanced solar pond.


1970 ◽  
Vol 43 (2) ◽  
pp. 407-418 ◽  
Author(s):  
M. R. Foster ◽  
P. G. Saffman

The slow motion of a body through a stratified fluid bounded laterally by insulating walls is studied for both large and small Peclet number. The Taylor column and its associated boundary and shear layers are very different from the analogous problem in a rotating fluid. In particular, the large Peclet number problem is non-linear and exhibits mixing of statically unstable fluid layers, and hence the drag is order one; whereas the small Peclet number flow is everywhere stable, and the drag is of the order of the Peclet number.


1994 ◽  
Vol 04 (05) ◽  
pp. 1135-1146 ◽  
Author(s):  
VLADIMIR I. NEKORKIN ◽  
MANUEL G. VELARDE

Propagating dissipative (localized) structures like solitary waves, pulses or “solitons,” “bound solitons,” and “chaotic” wave trains are shown to be solutions of a dissipation-modified Korteweg-de Vries equation that in particular appears in Marangoni-Bénard convection when a liquid layer is heated from the air side and in the description of internal waves in sheared, stably stratified fluid layers.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Mukesh Kumar Awasthi

Abstract This paper examines the effect of transfer of heat and mass on the capillary instability between a viscoelastic liquid and a viscous gas. The viscoelastic liquid obeys the Oldroyd B-model. These two fluid layers considered in coaxial cylinders and viscoelastic–viscous potential flow theory are used for investigation. To study the stability of the interface, the normal-mode procedure is employed and a cubic dispersion equation in terms of growth rate has been obtained. We observe that the viscoelastic liquid–viscous gas interface is more unstable than the viscous liquid–viscous gas interface. Additionally, we show that the unstable axisymmetric wave modes are stabilized by allowing heat transfer at the interface.


1989 ◽  
Vol 9 (34) ◽  
pp. 213-216
Author(s):  
Masanori NAKAI ◽  
Takehiko SUZUKI ◽  
Shinya SHIMIZU ◽  
Takashi ASAEDA

2007 ◽  
Vol 577 ◽  
pp. 53-77 ◽  
Author(s):  
V. K. BIRMAN ◽  
B. A. BATTANDIER ◽  
E. MEIBURG ◽  
P. F. LINDEN

Two-dimensional variable-density Navier–Stokes simulations have been conducted in order to investigate the effects of a slope on the classical lock-exchange flow. Simulations of full lock releases show that the flow goes through an initial quasi-steady phase that is characterized by a constant front velocity. This quasi-steady front velocity has a maximum for slope angles around 40°, and it persists up to a dimensionless time of the order of 10. The flow subsequently undergoes a transition to a second phase with a larger, unsteady, front velocity. These computational findings were confirmed by experimental observations of lock-exchange flows in a tube of circular cross-section.The reason for the observed transition from a quasi-steady front velocity to a larger, unsteady, value is found in the continuous acceleration of the stratified fluid layers connecting the two fronts by the streamwise component of the gravity vector. This acceleration leads to a situation where the fluid layers behind the current front move faster than the front itself. Initially the resulting addition of fluid to the current front from behind affects only the size of the front, while its velocity remains unchanged. Eventually, the current front is unable to absorb more fluid from behind and its velocity has to increase, thereby triggering the transition to the second, unsteady, phase. The transition time is determined as a function of the slope and the density ratio of the two fluids. For increasing density contrast, the transition is seen to occur earlier for the denser current.Conceptually simple models based on the analysis by Thorpe (1968) are compared with simulation results for the flow in the region connecting the fronts. For the early stages of the flow a two-layer stratification model is found to be appropriate, while the later stages require a three-layer stratification model, owing to the intense mixing in the central part of the channel cross-section. These models are employed to estimate the time after which the accelerating stratified fluid layers will affect the velocities of the current fronts. They provide upper and lower estimates for the transition time which are in good agreement with the simulation results.


2001 ◽  
Vol 438 ◽  
pp. 379-407 ◽  
Author(s):  
R. E. HEWITT ◽  
M. R. FOSTER ◽  
P. A. DAVIES

We consider the spin-up of a two-layer, stably (density) stratified fluid in a rotating container with an axisymmetric sloping base and cylindrical walls. Details of the spin- up readjustment mechanisms are presented under the assumption of small impulsive changes in the rotation rate of the container. It is shown that the relative positions of the density interface and the discontinuity in wall slope determine the qualitative large-time spin-up response of the fluid. The density interface leads to a spin-up readjustment in each of the fluid layers that is essentially independent. However, when the density interface is below the boundary-slope discontinuity, a sub-region of the upper layer is predicted to readjust in an algebraic rather than exponential manner. A detailed sequence of laboratory experiments have been performed to confirm the predictions of the linear spin-up analysis.


Sign in / Sign up

Export Citation Format

Share Document