The monooxygenase system in the human fetal liver: subcellular distribution and studies on in vitro metabolism of aniline

1971 ◽  
Vol 3 (4) ◽  
pp. 233-234 ◽  
Author(s):  
Else Ackermann ◽  
Anders Rane
1989 ◽  
Vol 170 (3) ◽  
pp. 1009-1014 ◽  
Author(s):  
P Aparicio ◽  
J M Alonso ◽  
M L Toribio ◽  
M A Marcos ◽  
L Pezzi ◽  
...  

Lymphocytes isolated from human fetal liver and expanded in vitro in IL-2-containing media reveal the existence of CD4+ gamma, delta T cells. These cells display differential features of double-negative and CD8+ gamma, delta T cells as well as of CD4+ alpha, beta T cells. Thus, they failed to lyse targets in lectin-mediated killing assays and to perform classical helper functions. These results add new information necessary for a better understanding of the physiological role of the gamma, delta T cells.


Blood ◽  
1999 ◽  
Vol 94 (8) ◽  
pp. 2686-2695 ◽  
Author(s):  
Franck E. Nicolini ◽  
Tessa L. Holyoake ◽  
Johanne D. Cashman ◽  
Pat P.Y. Chu ◽  
Karen Lambie ◽  
...  

Comparative measurements of different types of hematopoietic progenitors present in human fetal liver, cord blood, and adult marrow showed a large (up to 250-fold), stage-specific, but lineage-unrestricted, amplification of the colony-forming cell (CFC) compartment in the fetal liver, with a higher ratio of all types of CFC to long-term culture-initiating cells (LTC-IC) and a lower ratio of total (mature) cells to CFC. Human fetal liver LTC-IC were also found to produce more CFC in LTC than cord blood or adult marrow LTC-IC, and more of the fetal liver LTC-IC–derived CFC were erythroid. Human fetal liver cells regenerated human multilineage hematopoiesis in NOD/SCID mice with the same kinetics as human cord blood and adult marrow cells, but sustained a high level of terminal erythropoiesis not seen in adult marrow-engrafted mice unless exogenous human erythropoietin (Epo) was injected. This may be due to a demonstrated 10-fold lower activity of murine versus human Epo on human cells, sufficient to distinguish between a differential Epo sensitivity of fetal and adult erythroid precursors. Examination of human LTC-IC, CFC, and erythroblasts generated either in NOD/SCID mice and/or in LTC showed the types of cells and hemoglobins produced also to reflect their ontological origin, regardless of the environment in which the erythroid precursors were generated. We suggest that ontogeny may affect the behavior of cells at many stages of hematopoietic cell differentiation through key changes in shared signaling pathways.


Blood ◽  
1981 ◽  
Vol 57 (3) ◽  
pp. 483-490 ◽  
Author(s):  
PT Rowley ◽  
BM Ohlsson-Wilhelm ◽  
BA Farley

Abstract Neuraminidase treatment of human fetal liver or adult marrow cells prior to culture results in an increased number of erythroid colonies and bursts. No increase occurs in the number of nonerythroid colonies. The number of bursts having more than eight subunits is increased preferentially. Individual burst subunits are also enlarged. Neuraminidase-treated cells yield erythroid bursts when cultured in concentrations of erythropoietin insufficient to produce bursts from untreated cells. It is proposed that (1) neuraminidase treatment of adult and fetal cell mixtures specifically stimulates differentiation of erythroid precursors, (2) the preferential stimulation of erythroid bursts having many subunits suggests a preferential susceptibility of more primitive BFU-Es, and (3) neuraminidase treatment enhances the response of erythroid precursors to erythropoietin.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Hoda El-Kehdy ◽  
Guillaume Pourcher ◽  
Wenwei Zhang ◽  
Zahia Hamidouche ◽  
Sylvie Goulinet-Mainot ◽  
...  

In line with the search of effective stem cell population that would progress liver cell therapy and because the rate and differentiation potential of mesenchymal stem cells (MSC) decreases with age, the current study investigates the hepatogenic differentiation potential of human fetal liver MSCs (FL-MSCs). After isolation from 11-12 gestational weeks’ human fetal livers, FL-MSCs were shown to express characteristic markers such as CD73, CD90, and CD146 and to display adipocytic and osteoblastic differentiation potential. Thereafter, we explored their hepatocytic differentiation potential using the hepatogenic protocol applied for adult human liver mesenchymal cells. FL-MSCs differentiated in this way displayed significant features of hepatocyte-like cells as demonstratedin vitroby the upregulated expression of specific hepatocytic markers and the induction of metabolic functions including CYP3A4 activity, indocyanine green uptake/release, and glucose 6-phosphatase activity. Following transplantation, naive and differentiated FL-MSC were engrafted into the hepatic parenchyma of newborn immunodeficient mice and differentiatedin situ. Hence, FL-MSCs appeared to be interesting candidates to investigate the liver development at the mesenchymal compartment level. Standardization of their isolation, expansion, and differentiation may also support their use for liver cell-based therapy development.


1974 ◽  
Vol 8 (11) ◽  
pp. 911-911
Author(s):  
N C R Räihä ◽  
T W Rall ◽  
A L Schwartz

Blood ◽  
1987 ◽  
Vol 69 (1) ◽  
pp. 135-139 ◽  
Author(s):  
I Slaper-Cortenbach ◽  
R Ploemacher ◽  
B Lowenberg

The factors determining the predominantly erythroid direction of human fetal liver hematopoiesis are unknown. We compared the capacities of human fetal liver and bone marrow stromas to sustain fetal and adult hematopoiesis in long-term cultures. In various marrow-fetal liver combinations of stroma and recharge, the maintenance of erythroid (BFU- e) and myeloid (CFU-GM) precursors in the nonadherent phase was determined. The morphology of the fetal liver nucleated cells during culture was also examined. This study shows that fetal liver stromas efficiently support fetal BFU-e for 6 to 7 weeks in vitro. Bone marrow stromas were not able to maintain fetal BFU-e beyond 4 weeks. Significant numbers of marrow BFU-e were not sustained in vitro on either source of stroma. On the other hand, the stroma layers of fetal liver and marrow origin were equally effective in maintaining fetal CFU- GM and adult CFU-GM in long-term culture. These findings show that the human embryonic liver stroma is a preferential site for stimulating fetal erythropoiesis. They do not demonstrate differences in stroma function to explain the relative paucity of myelopoiesis in the fetal liver.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4264-4264
Author(s):  
Jin-Young Baek ◽  
Yun-Hee Rhee ◽  
Kwang-Yul Cha ◽  
Hyung-Min Chung

Abstract Prolonged propagation of human embryonic stem (ES) cells is currently achieved by co-culture with primary or immortalized mouse embryonic fibroblast (MEF) cells. In order to replace the heterologous with homologous co-culture systems, an attempt was made using mononuclear cells derived from human fetal liver. Human fetal liver-derived mesenchymal-like stem cells (FL-MLSC) can be maintained for the prolonged period of time. They showed the characteristics of mesenchymal stem cells in various aspects. They retained a normal diploid karyotype and growth characteristics over the successive culture. Human ES cells cultured on human FL-MLSC cells up to 8 passages displayed the unique morphology and molecular markers characteristic for undifferentiated human ES cells as cultured on MEF cells. Alkaline phosphatase activity was detected in human ES cells co-cultured on human FL-MLSC. Immunocytochemical analyses showed that expressions of stage-specific embryonic antigen-3, -4 and Oct-4 were not altered on human ES cells cultured on human FLDSC. Reverse-transcriptase PCR analyses showed that similar expressions of Oct-4 and Nanog genes, markers for undifferentiated ES cells, were also observed in human ES cells cultured on both human FL-MLSC and MEF cells. Furthermore, human ES cells cultured on human FL-MLSC retained unique differentiation potentials in culture when allowed to form embryoid body. Results of this study suggest that human FL-MLSC can support the maintenance of human ES cell in vitro.


2018 ◽  
Vol 21 (3) ◽  
pp. 257-269 ◽  
Author(s):  
Eva Schmelzer ◽  
Hubert G. Foka ◽  
Robert L. Thompson ◽  
Angelo Luca ◽  
Bruno Gridelli ◽  
...  

Life Sciences ◽  
1970 ◽  
Vol 9 (20) ◽  
pp. 1189-1200 ◽  
Author(s):  
S.J. Yaffe ◽  
A. Rane ◽  
F. Sjöqvist ◽  
L.-O. Boréus ◽  
S. Orrenius

Sign in / Sign up

Export Citation Format

Share Document