Response of Human Fetal Liver Progenitor Cell Types to Temperature and pH Stresses In Vitro

2018 ◽  
Vol 21 (3) ◽  
pp. 257-269 ◽  
Author(s):  
Eva Schmelzer ◽  
Hubert G. Foka ◽  
Robert L. Thompson ◽  
Angelo Luca ◽  
Bruno Gridelli ◽  
...  
1989 ◽  
Vol 170 (3) ◽  
pp. 1009-1014 ◽  
Author(s):  
P Aparicio ◽  
J M Alonso ◽  
M L Toribio ◽  
M A Marcos ◽  
L Pezzi ◽  
...  

Lymphocytes isolated from human fetal liver and expanded in vitro in IL-2-containing media reveal the existence of CD4+ gamma, delta T cells. These cells display differential features of double-negative and CD8+ gamma, delta T cells as well as of CD4+ alpha, beta T cells. Thus, they failed to lyse targets in lectin-mediated killing assays and to perform classical helper functions. These results add new information necessary for a better understanding of the physiological role of the gamma, delta T cells.


Blood ◽  
1995 ◽  
Vol 85 (3) ◽  
pp. 675-684 ◽  
Author(s):  
K Pulford ◽  
N Lecointe ◽  
K Leroy-Viard ◽  
M Jones ◽  
D Mathieu-Mahul ◽  
...  

Rearrangement of the tal-1 gene (also known as SCL or TCL-5) occurs in at least 25% of T-cell acute lymphoblastic leukemias (T-ALLs) and results in the aberrant expression of tal-1 mRNA in the neoplastic cells. Also, tal-1 mRNA is constitutively expressed in erythroid precursors and megakaryocytes. This report describes a direct immunocytochemical study of the distribution and localization of TAL-1 protein in normal human tissues and cell lines using four monoclonal antibodies raised against recombinant TAL-1 proteins. One of these reagents recognizes a protein of 41 kD molecular weight in in vitro- translated TAL-1 proteins, two others recognize proteins of 39 and 41 kD molecular weight, and the fourth antibody also recognizes a TAL-1 protein of 22 kD in addition to the 39- and 41-kD proteins. These anti- TAL-1 antibodies label the nuclei of erythroid precursor cells and megakaryocytes in fetal liver and adult bone marrow. The punctate pattern of nuclear labeling suggests that TAL-1 may comprise part of a novel nuclear structure, similar to that recently found for the PML protein. The nuclei of T cell lines known to express mRNA encoding the full-length TAL-1 protein (eg, CCRF-CEM, RPMI 8402, and Jurkat) are also labeled. A study of normal human tissues (including thymus) showed labeling of smooth muscle, some tissue macrophages, and endothelial cells. TAL-1 protein is undetectable in other cell types. These reagents may play an important role in the diagnosis of T-ALL and could also be used in the context of lymphoma diagnosis on routinely fixed material.


Blood ◽  
1999 ◽  
Vol 94 (8) ◽  
pp. 2686-2695 ◽  
Author(s):  
Franck E. Nicolini ◽  
Tessa L. Holyoake ◽  
Johanne D. Cashman ◽  
Pat P.Y. Chu ◽  
Karen Lambie ◽  
...  

Comparative measurements of different types of hematopoietic progenitors present in human fetal liver, cord blood, and adult marrow showed a large (up to 250-fold), stage-specific, but lineage-unrestricted, amplification of the colony-forming cell (CFC) compartment in the fetal liver, with a higher ratio of all types of CFC to long-term culture-initiating cells (LTC-IC) and a lower ratio of total (mature) cells to CFC. Human fetal liver LTC-IC were also found to produce more CFC in LTC than cord blood or adult marrow LTC-IC, and more of the fetal liver LTC-IC–derived CFC were erythroid. Human fetal liver cells regenerated human multilineage hematopoiesis in NOD/SCID mice with the same kinetics as human cord blood and adult marrow cells, but sustained a high level of terminal erythropoiesis not seen in adult marrow-engrafted mice unless exogenous human erythropoietin (Epo) was injected. This may be due to a demonstrated 10-fold lower activity of murine versus human Epo on human cells, sufficient to distinguish between a differential Epo sensitivity of fetal and adult erythroid precursors. Examination of human LTC-IC, CFC, and erythroblasts generated either in NOD/SCID mice and/or in LTC showed the types of cells and hemoglobins produced also to reflect their ontological origin, regardless of the environment in which the erythroid precursors were generated. We suggest that ontogeny may affect the behavior of cells at many stages of hematopoietic cell differentiation through key changes in shared signaling pathways.


Blood ◽  
1981 ◽  
Vol 57 (3) ◽  
pp. 483-490 ◽  
Author(s):  
PT Rowley ◽  
BM Ohlsson-Wilhelm ◽  
BA Farley

Abstract Neuraminidase treatment of human fetal liver or adult marrow cells prior to culture results in an increased number of erythroid colonies and bursts. No increase occurs in the number of nonerythroid colonies. The number of bursts having more than eight subunits is increased preferentially. Individual burst subunits are also enlarged. Neuraminidase-treated cells yield erythroid bursts when cultured in concentrations of erythropoietin insufficient to produce bursts from untreated cells. It is proposed that (1) neuraminidase treatment of adult and fetal cell mixtures specifically stimulates differentiation of erythroid precursors, (2) the preferential stimulation of erythroid bursts having many subunits suggests a preferential susceptibility of more primitive BFU-Es, and (3) neuraminidase treatment enhances the response of erythroid precursors to erythropoietin.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Hoda El-Kehdy ◽  
Guillaume Pourcher ◽  
Wenwei Zhang ◽  
Zahia Hamidouche ◽  
Sylvie Goulinet-Mainot ◽  
...  

In line with the search of effective stem cell population that would progress liver cell therapy and because the rate and differentiation potential of mesenchymal stem cells (MSC) decreases with age, the current study investigates the hepatogenic differentiation potential of human fetal liver MSCs (FL-MSCs). After isolation from 11-12 gestational weeks’ human fetal livers, FL-MSCs were shown to express characteristic markers such as CD73, CD90, and CD146 and to display adipocytic and osteoblastic differentiation potential. Thereafter, we explored their hepatocytic differentiation potential using the hepatogenic protocol applied for adult human liver mesenchymal cells. FL-MSCs differentiated in this way displayed significant features of hepatocyte-like cells as demonstratedin vitroby the upregulated expression of specific hepatocytic markers and the induction of metabolic functions including CYP3A4 activity, indocyanine green uptake/release, and glucose 6-phosphatase activity. Following transplantation, naive and differentiated FL-MSC were engrafted into the hepatic parenchyma of newborn immunodeficient mice and differentiatedin situ. Hence, FL-MSCs appeared to be interesting candidates to investigate the liver development at the mesenchymal compartment level. Standardization of their isolation, expansion, and differentiation may also support their use for liver cell-based therapy development.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3568-3568
Author(s):  
Mattias Magnusson ◽  
Melissa Romero ◽  
Sacha Prashad ◽  
Ben Van Handel ◽  
Suvi Aivio ◽  
...  

Abstract Expansion of human hematopoietic stem cells (HSCs) ex vivo has been difficult due to limited understanding of their growth requirements and the molecular complexity of their natural microenvironments. To mimic the niches in which human HSCs normally develop and expand during ontogeny, we have derived two unique types of stromal niche cells from the first trimester human placenta and the fetal liver. These lines either support maintenance of multipotential progenitors in culture, or promote differentiation into macrophages. Impressively, the supportive lines facilitate over 50,000-fold expansion of the most immature human HSCs/progenitors (CD34+CD38-Thy1+) during 8-week culture supplemented with minimal cytokines FLT3L, SCF and TPO, whereas the cells cultured on non-supportive stroma or without stroma under the same conditions differentiated within 2 weeks. As the supportive stroma lines also facilitate differentiation of human hematopoietic progenitors into myeloid, erythroid and B-lymphoid lineages, we were able to show that the expanded progenitors preserved full multipotentiality during long-term culture ex vivo. Furthermore, our findings indicate that the supportive stroma lines also direct differentiation of human embryonic stem cells (hESC) into hematopoietic progenitor cells (CD45+CD34+) that generate multiple types of myeloerythroid colonies. These data imply that the unique supportive niche cells can both support hematopoietic specification and sustain a multilineage hematopoietic hierarchy in culture over several weeks. Strikingly, the supportive effect from the unique stromal cells was dominant over the differentiation effect from the non-supportive lines. Even supernatant from the supportive lines was able to partially protect the progenitors that were cultured on the non-supportive lines, whereas mixing of the two types of stroma resulted in sustained preservation of the multipotential progenitors. These results indicate that the supportive stroma cells possess both secreted and surface bound molecules that protect multipotentiality of HSCs. Global gene expression analysis revealed that the supportive stroma lines from both the placenta and the fetal liver were almost identical (r=0.99) and very different from the non-supportive lines that promote differentiation (r=0.34), implying that they represent two distinct niche cell types. Interestingly, the non-supportive lines express known mesenchymal markers such as (CD73, CD44 and CD166), whereas the identity of the supportive cells is less obvious. In summary, we have identified unique human stromal niche cells that may be critical components of the HSC niches in the placenta and the fetal liver. Molecular characterization of these stroma lines may enable us to define key mechanisms that govern the multipotentiality of HSCs.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1892-1892
Author(s):  
Paul H. Miller ◽  
Alice M.S. Cheung ◽  
Suzan Imren ◽  
Philip A Beer ◽  
Shabnam Rostamirad ◽  
...  

Abstract Abstract 1892 Cord blood (CB) is becoming an increasingly utilized source of cells for cancer patients who are eligible for therapies that require a transplant to rescue them from toxic side effects on their own hematopoietic cells but lack a suitable HLA-matched donor. This strategy is now routinely used in children, but delayed neutrophil and platelet recovery remain unsolved problems and these problems are exacerbated in adults. To address this issue, we first surveyed the variability in 8 individual CB harvests of parameters routinely used to predict the utility of CB units as transplants (i.e., CD34+ and in vitro myeloid clonogenic progenitor cell frequencies). In addition, we compared their 3-week outputs of CD33/15/66+ cells (neutrophils and monocytes) in the marrow and CD41a+ platelets in the blood of sublethally irradiated NSG mice after the IV transplantation of ∼104 CD34+ cells. These latter assessments were based on ongoing experiments in our lab demonstrating that, at this transplant dose, the outputs measured are linearly related to the number of CD34+ cells injected and detect transplantable progenitor cell types that are biologically distinct from cells with longer term repopulating activity. The results showed variation between CBs in all parameters, a marked lack of correlation between %CD34+ cells or % total CFCs in initial cells and %CD41a+ cells regenerated at 3 weeks/104 CD34+ cells transplanted (R=-0.28 and 0.35, respectively), and a weak correlation between the %CD33/15/66+ cells regenerated at 3 weeks/104 CD34+ cells transplanted and %CD34+ cells or % total CFCs in the initial CB cells (R values of 0.46–0.64). However, although engraftment of primitive human cells in NSG mice appears highly efficient, terminal differentiation of the myeloid lineages in these mice is poor. One possible explanation for this deficiency in mature cell output is that several of the murine growth factors responsible for regulating the production and release of these cells into the circulation in mice are not cross-reactive on human cells. We therefore hypothesized that engineering NSG mice to produce the human counterparts might significantly improve the detection of short term repopulating human cells whose maximum clone size might be limiting in NSG mice. Three potential relevant factors are IL-3, GM-CSF and Steel factor. We therefore backcrossed a line of transgenic NS mice we had created to express human IL-3, GM-CSF and Steel factor onto the NSG strain to produce homozygous NSG mice expressing all 3 of these human factors (NSG-3GS mice). We then compared these NSG-3GS mice with NSG mice in terms of their ability to stimulate the production within 3 weeks of human neutrophil-monocytes and platelets from intravenously transplanted CD34+ cells isolated from pooled CB harvests. The results showed that the levels of neutrophils and monocytes generated in the marrow of the NSG-3GS mice were elevated to levels of >50% of the marrow in 90% of the mice, even at the lowest number of CD34+ cells transplanted. Human neutrophils and monocytes were also elevated in the blood of the NSG-3GS mice where, despite the observed “saturation” of the marrow, there was a linear dose-response in the number of human neutrophils and monocytes present in the blood with increasing CD34+ cells infused. These findings are consistent with the reported activities of these molecules in vitro and in patients suggesting their physiological relevance in this murine xenograft model. We next utilized this assay to characterize the cells responsible for the neutrophil/monocyte and platelet repopulating activities detected in NSG-3GS mice. Preliminary assessment of the CD34+CD45RA- population on the basis of CD123 (IL-3 receptor alpha chain) expression indicates that the CD123+ fraction is enriched for short term (3-week) neutrophil/monocyte repopulating activity, while the CD123- fraction is enriched for short term (3-week) platelet repopulating activity. In summary, NSG-3GS mice significantly enhance the output of human cells with short term human myeloid repopulating ability thereby enabling neutrophil/monocyte outputs as well as platelet outputs to be assessed by analysis of peripheral blood samples. We have also used this tool to obtain evidence that these two outputs are derived from distinct cell types. Direct quantification of these may add to future predictions of graft quality. Disclosures: No relevant conflicts of interest to declare.


As part of our attempts to understand principles that underly organism development, we have been studying the development of the rat optic nerve. This simple tissue is composed of three glial cell types derived from two distinct cellular lineages. Type-1 astrocytes appear to be derived from a monopotential neuroepithelial precursor, whereas type-2 astrocytes and oligodendrocytes are derived from a common oligodendrocyte-type-2 astrocyte (O-2A) progenitor cell. Type-1 astrocytes modulate division and differentiation of O-2A progenitor cells through secretion of platelet-derived growth factor, and can themselves be stimulated to divide by peptide mitogens and through stimulation of neurotransmitter receptors. In vitro analysis indicates that many dividing O-2A progenitors derived from optic nerves of perinatal rats differentiate symmetrically and clonally to give rise to oligodendrocytes, or can be induced to differentiate into type-2 astrocytes. O-2A perinatal progenitors can also differentiate to form a further O-2A lineage cell, the O-2A adult progenitor, which has properties specialized for the physiological requirements of the adult nervous system. In particular, O-2A adult progenitors have many of the features of stem cells, in that they divide slowly and asymmetrically and appear to have the capacity for extended self-renewal. The apparent derivation of a slowly and asymmetrically dividing cell, with properties appropriate for homeostatic maintenance of existing populations in the mature animal, from a rapidly dividing cell with properties suitable for the rapid population and myelination of central nervous system (CNS) axon tracts during early development, offers novel and unexpected insights into the possible origin of self-renewing stem cells and also into the role that generation of stem cells may play in helping to terminate the explosive growth of embryogenesis. Moreover, the properties of O-2A adult progenitor cells are consistent with, and may explain, the failure of successful myelin repair in conditions such as multiple sclerosis, and thus seem to provide a cellular biological basis for understanding one of the key features of an important human disease.


Sign in / Sign up

Export Citation Format

Share Document