Identification of cell-type-specific genes of Volvox carteri and characterization of their expression during the asexual life cycle

1991 ◽  
Vol 145 (1) ◽  
pp. 51-66 ◽  
Author(s):  
Lai-Wa Tam ◽  
David L. Kirk
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Houri Hintiryan ◽  
Ian Bowman ◽  
David L. Johnson ◽  
Laura Korobkova ◽  
Muye Zhu ◽  
...  

AbstractThe basolateral amygdalar complex (BLA) is implicated in behaviors ranging from fear acquisition to addiction. Optogenetic methods have enabled the association of circuit-specific functions to uniquely connected BLA cell types. Thus, a systematic and detailed connectivity profile of BLA projection neurons to inform granular, cell type-specific interrogations is warranted. Here, we apply machine-learning based computational and informatics analysis techniques to the results of circuit-tracing experiments to create a foundational, comprehensive BLA connectivity map. The analyses identify three distinct domains within the anterior BLA (BLAa) that house target-specific projection neurons with distinguishable morphological features. We identify brain-wide targets of projection neurons in the three BLAa domains, as well as in the posterior BLA, ventral BLA, posterior basomedial, and lateral amygdalar nuclei. Inputs to each nucleus also are identified via retrograde tracing. The data suggests that connectionally unique, domain-specific BLAa neurons are associated with distinct behavior networks.


2013 ◽  
Vol 28 (3) ◽  
pp. 267-273 ◽  
Author(s):  
Marica Gemei ◽  
Rosa Di Noto ◽  
Peppino Mirabelli ◽  
Luigi Del Vecchio

In colorectal cancer, CD133+ cells from fresh biopsies proved to be more tumorigenic than their CD133– counterparts. Nevertheless, the function of CD133 protein in tumorigenic cells seems only marginal. Moreover, CD133 expression alone is insufficient to isolate true cancer stem cells, since only 1 out of 262 CD133+ cells actually displays stem-cell capacity. Thus, new markers for colorectal cancer stem cells are needed. Here, we show the extensive characterization of CD133+ cells in 5 different colon carcinoma continuous cell lines (HT29, HCT116, Caco2, GEO and LS174T), each representing a different maturation level of colorectal cancer cells. Markers associated with stemness, tumorigenesis and metastatic potential were selected. We identified 6 molecules consistently present on CD133+ cells: CD9, CD29, CD49b, CD59, CD151, and CD326. By contrast, CD24, CD26, CD54, CD66c, CD81, CD90, CD99, CD112, CD164, CD166, and CD200 showed a discontinuous behavior, which led us to identify cell type-specific surface antigen mosaics. Finally, some antigens, e.g. CD227, indicated the possibility of classifying the CD133+ cells into 2 subsets likely exhibiting specific features. This study reports, for the first time, an extended characterization of the CD133+ cells in colon carcinoma cell lines and provides a “dictionary” of antigens to be used in colorectal cancer research.


Cell Calcium ◽  
2021 ◽  
Vol 94 ◽  
pp. 102334
Author(s):  
Xin Su ◽  
Tamara Vasilkovska ◽  
Nicole Fröhlich ◽  
Olga Garaschuk

PLoS Genetics ◽  
2005 ◽  
Vol preprint (2007) ◽  
pp. e136
Author(s):  
Hualin Xi ◽  
Hennady P Shulha ◽  
Jane M Lin ◽  
Teresa R Vales ◽  
Yutao Fu ◽  
...  

2019 ◽  
Vol 234 (9) ◽  
pp. 14422-14431 ◽  
Author(s):  
Yixin Zheng ◽  
Xuejie Fu ◽  
Qingbai Liu ◽  
Shengqi Guan ◽  
Cunchang Liu ◽  
...  

2020 ◽  
Vol 16 (S2) ◽  
Author(s):  
Janina S. Ried ◽  
Marco Rocha Curado ◽  
María Eugenia Sáez ◽  
Lamiaa Bahnassawy ◽  
Heyne Lee ◽  
...  
Keyword(s):  

2018 ◽  
Author(s):  
Xuran Wang ◽  
Jihwan Park ◽  
Katalin Susztak ◽  
Nancy R. Zhang ◽  
Mingyao Li

AbstractWe present MuSiC, a method that utilizes cell-type specific gene expression from single-cell RNA sequencing (RNA-seq) data to characterize cell type compositions from bulk RNA-seq data in complex tissues. When applied to pancreatic islet and whole kidney expression data in human, mouse, and rats, MuSiC outperformed existing methods, especially for tissues with closely related cell types. MuSiC enables characterization of cellular heterogeneity of complex tissues for identification of disease mechanisms.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Julio D Perez ◽  
Susanne tom Dieck ◽  
Beatriz Alvarez-Castelao ◽  
Georgi Tushev ◽  
Ivy CW Chan ◽  
...  

Although mRNAs are localized in the processes of excitatory neurons, it is still unclear whether interneurons also localize a large population of mRNAs. In addition, the variability in the localized mRNA population within and between cell-types is unknown. Here we describe the unbiased transcriptomic characterization of the subcellular compartments of hundreds of single neurons. We separately profiled the dendritic and somatic transcriptomes of individual rat hippocampal neurons and investigated mRNA abundances in the soma and dendrites of single glutamatergic and GABAergic neurons. We found that, like their excitatory counterparts, interneurons contain a rich repertoire of ~4000 mRNAs. We observed more cell type-specific features among somatic transcriptomes than their associated dendritic transcriptomes. Finally, using cell-type specific metabolic labelling of isolated neurites, we demonstrated that the processes of Glutamatergic and, notably, GABAergic neurons were capable of local translation, suggesting mRNA localization and local translation is a general property of neurons.


Sign in / Sign up

Export Citation Format

Share Document