Elastic damage and energy dissipation in anisotropic solid material

1989 ◽  
Vol 33 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Shen Wei ◽  
Peng Li-Hua ◽  
Yue Yun-Guo ◽  
Shen Zeng ◽  
Tang Xian-Dong
Author(s):  
P.G. Pawar ◽  
P. Duhamel ◽  
G.W. Monk

A beam of ions of mass greater than a few atomic mass units and with sufficient energy can remove atoms from the surface of a solid material at a useful rate. A system used to achieve this purpose under controlled atmospheres is called an ion miliing machine. An ion milling apparatus presently available as IMMI-III with a IMMIAC was used in this investigation. Unless otherwise stated, all the micro milling operations were done with Ar+ at 6kv using a beam current of 100 μA for each of the two guns, with a specimen tilt of 15° from the horizontal plane.It is fairly well established that ion bombardment of the surface of homogeneous materials can produce surface topography which resembles geological erosional features.


Author(s):  
J. R. Sellar ◽  
J. M. Cowley

Current interest in high voltage electron microscopy, especially in the scanning mode, has prompted the development of a method for determining the contrast and resolution of images of specimens in controlled-atmosphere stages or open to the air, hydrated biological specimens being a good example. Such a method would be of use in the prediction of microscope performance and in the subsequent optimization of environmental cell design for given circumstances of accelerating voltage, cell gas pressure and constitution, and desired resolution.Fig. 1 depicts the alfresco cell of a focussed scanning transmission microscope with a layer of gas L (and possibly a thin window W) between the objective O and specimen T. Using the principle of reciprocity, it may be considered optically equivalent to a conventional transmission electron microscope, if the beams were reversed. The layer of gas or solid material after the specimen in the STEM or before the specimen in TEM has no great effect on resolution or contrast and so is ignored here.


Author(s):  
Krisztina Sebők-Nagy ◽  
László Biczók ◽  
Akimitsu Morimoto ◽  
Tetsuya Shimada ◽  
Haruo Inoue

2018 ◽  
Author(s):  
Praveen K. Sharma ◽  
Harish N Dixit
Keyword(s):  

2019 ◽  
Vol 48 (3) ◽  
pp. 224-248
Author(s):  
Pablo N. Zitelli ◽  
Gabriel N. Curtosi ◽  
Jorge Kuster

ABSTRACT Tire engineers are interested in predicting rolling resistance using tools such as numerical simulation and tests. When a car is driven along, its tires are subjected to repeated deformation, leading to energy dissipation as heat. Each point of a loaded tire is deformed as the tire completes a revolution. Most energy dissipation comes from the cyclic loading of the tire, which causes the rolling resistance in addition to the friction force in the contact patch between the tire and road. Rolling resistance mainly depends on the dissipation of viscoelastic energy of the rubber materials used to manufacture the tires. To obtain a good rolling resistance, the calculation method of the tire finite element model must take into account temperature changes. It is mandatory to calibrate all of the rubber compounds of the tire at different temperatures and strain frequencies. Linear viscoelasticity is used to model the materials properties and is found to be a suitable approach to tackle energy dissipation due to hysteresis for rolling resistance calculation.


Sign in / Sign up

Export Citation Format

Share Document