Some physical and mechanical properties of isotactic-atactic poly(methyl methacrylate) blends and stereoblocks

1985 ◽  
Vol 21 (7) ◽  
pp. 603-610 ◽  
Author(s):  
P.E.M. Allen ◽  
D.M. Host ◽  
Van Tan Truong ◽  
D.R.G. Williams
2021 ◽  
Vol 10 (2) ◽  
pp. 1-9
Author(s):  
René García-Contreras ◽  
◽  
Héctor Guzmán-Juárez ◽  
Daniel López-Ramos ◽  
Carlos Alvarez-Gayosso ◽  
...  

Objective: To determine the cytotoxicity and effects of graphene oxide (GO) on cellular proliferation of gingival-fibroblasts, pulpdental cells and human osteoblasts in culture, and to determine the physical, mechanical and biological properties of poly (methyl methacrylate) (PMMA) enriched with GO. Material and Methods: T he G O w as c haracterized with SEM. Cytotoxicity and cell proliferation were determined by the MTT bioassay. The physical-mechanical tests (flexural strength and elastic modulus) were carried out with a universal testing machine. Sorption and solubility were determined by weighing before and after drying and immersion in water. Porosity was evaluated by visual inspection. Data were analyzed with Student's t-test and Tukey's post-hoc ANOVA. Results: The GO has a heterogeneous morphology and a particle size of 66.67±64.76 μm. GO has a slight to no-cytotoxicity (>50-75% viability) at 1-30 days, and at 24 hours incubation of PMMA with GO significantly stimulates osteoblasts (45±8%, p<0.01). The physical and mechanical properties of PMMA with GO increase considerably without altering sorption, solubility and porosity. Conclusion: GO alone or with PMMA has an acceptable biocompatibility, could contribute to cell proliferation, cell regeneration and improve the physical-mechanical properties of PMMA.


2019 ◽  
Vol 27 (6(138)) ◽  
pp. 67-74
Author(s):  
Witold Sujka ◽  
Zbigniew Draczyński ◽  
Jacek Rutkowski ◽  
Krzysztof Karbowski ◽  
T. Gasiorowski ◽  
...  

The aim of the study was to compare the physical and mechanical properties of known prostheses for cranioplasty: knitted Codubix based on polypropylene and Modela-cryl resin based on PMMA. It was expected that the study would allow to check whether it is possible to combine their properties, which should enable the preparation of a new material with properties combining the best features of both components. Physico-chemical and mechanical properties were evaluated. It was found that the two materials meet the requirements for chemical purity, ensuring the safety of their use. Regarding the mechanical properties, the energy of impact diffusion for two types of prostheses was determined applying the Drop Tower technique. The polymerisation heat of Modela-cryl resin was determined in real time using the DSC technique.


Sign in / Sign up

Export Citation Format

Share Document