Transformation of alveolar Type 2 cells to Type 1 cells following exposure to NO2

1975 ◽  
Vol 22 (1) ◽  
pp. 142-150 ◽  
Author(s):  
Michael J. Evans ◽  
Linda J. Cabral ◽  
Robert J. Stephens ◽  
Gustave Freeman
Keyword(s):  
2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Nicholle M. Johnson ◽  
Charles A. Downs ◽  
Lisa H. Kreiner ◽  
My N. Helms
Keyword(s):  

1982 ◽  
Vol 95 (2) ◽  
pp. 394-402 ◽  
Author(s):  
J S Brody ◽  
C A Vaccaro ◽  
P J Gill ◽  
J E Silbert

We studied the ultrastructural characteristics of alveolar basement membranes (ABM) and capillary basement membranes (CBM) in rat lungs at birth, at 8-10 d of age, during alveolar formation, and at 6-10 wk of age, after most alveoli have formed. We also measured in vitro lung proteoglycan and heparan sulfate synthesis at each age. We noted three major age-related changes in pulmonary basement membranes. (a) Discontinuities in the ABM through which basilar cytoplasmic foot processes extend are present beneath alveolar type-2 cells but not alveolar type-1 cells. These discontinuities are most prevalent at birth but also exist in the adult. (b) Discontinuities are also present in CBM at the two earliest time points but are maximal at 8 d of age rather than at birth. Fusions between ABM and CBM are often absent at 8 d of age, but CBM and CBM/ABM fusions were complete in the adult. (c) Heparan sulfate proteoglycans identified with ruthenium red and selective enzyme degradation are distributed equally on epithelial and interstitial sides of the ABM lamina densa at birth, but decrease on the interstitial side with age. In vitro proteoglycan and heparan sulfate accumulation at birth was two times that at 8 d and five times that in the adult. Discontinuities in ABM allow epithelial-mesenchymal interactions that may influence type-2 cells cytodifferentiation. Discontinuities in CBM suggest that capillary proliferation and neovascularization are associated with alveolar formation at 8 d. When CBM becomes complete and forms junctions with ABM, lung neovascularization likely ends as does the ability to form new alveoli.


2021 ◽  
Vol 2 ◽  
Author(s):  
Nikeya Tisdale-Macioce ◽  
Jenna Green ◽  
Anne-Karina T. Perl ◽  
Alan Ashbaugh ◽  
Nathan P. Wiederhold ◽  
...  

Pneumocystis species (spp.) are host-obligate fungal parasites that colonize and propagate almost exclusively in the alveolar lumen within the lungs of mammals where they can cause a lethal pneumonia. The emergence of this pneumonia in non-HIV infected persons caused by Pneumocystis jirovecii (PjP), illustrates the continued importance of and the need to understand its associated pathologies and to develop new therapies and preventative strategies. In the proposed life cycle, Pneumocystis spp. attach to alveolar type 1 epithelial cells (AEC1) and prevent gas exchange. This process among other mechanisms of Pneumocystis spp. pathogenesis is challenging to observe in real time due to the absence of a continuous ex vivo or in vitro culture system. The study presented here provides a proof-of-concept for the development of murine lung organoids that mimic the lung alveolar sacs expressing alveolar epithelial type 1 cells (AEC1) and alveolar type 2 epithelial cells (AEC2). Use of these 3-dimensional organoids should facilitate studies of a multitude of unanswered questions and serve as an improved means to screen new anti- PjP agents.


2021 ◽  
Vol 118 (20) ◽  
pp. e2101100118
Author(s):  
Satoshi Watanabe ◽  
Nikolay S. Markov ◽  
Ziyan Lu ◽  
Raul Piseaux Aillon ◽  
Saul Soberanes ◽  
...  

Pulmonary fibrosis is a relentlessly progressive and often fatal disease with a paucity of available therapies. Genetic evidence implicates disordered epithelial repair, which is normally achieved by the differentiation of small cuboidal alveolar type 2 (AT2) cells into large, flattened alveolar type 1 (AT1) cells as an initiating event in pulmonary fibrosis pathogenesis. Using models of pulmonary fibrosis in young adult and old mice and a model of adult alveologenesis after pneumonectomy, we show that administration of ISRIB, a small molecule that restores protein translation by EIF2B during activation of the integrated stress response (ISR), accelerated the differentiation of AT2 into AT1 cells. Accelerated epithelial repair reduced the recruitment of profibrotic monocyte-derived alveolar macrophages and ameliorated lung fibrosis. These findings suggest a dysfunctional role for the ISR in regeneration of the alveolar epithelium after injury with implications for therapy.


2008 ◽  
Vol 38 (15) ◽  
pp. 18
Author(s):  
SHERRY BOSCHERT
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document