Evidence of a contractile mechanism in the taste bud of the mouse fungiform papilla

1974 ◽  
Vol 44 (3) ◽  
pp. 461-469 ◽  
Author(s):  
Carl F.T. Mattern ◽  
Nava Paran
2013 ◽  
Vol 382 (1) ◽  
pp. 82-97 ◽  
Author(s):  
Hong Xiang. Liu ◽  
Alexandre Ermilov ◽  
Marina Grachtchouk ◽  
Libo Li ◽  
Deborah L. Gumucio ◽  
...  

2020 ◽  
Vol 45 (4) ◽  
pp. 261-273
Author(s):  
Takahiro Ogata ◽  
Yoshitaka Ohtubo

Abstract A mouse single taste bud contains 10–100 taste bud cells (TBCs) in which the elongated TBCs are classified into 3 cell types (types I–III) equipped with different taste receptors. Accordingly, differences in the cell numbers and ratios of respective cell types per taste bud may affect taste-nerve responsiveness. Here, we examined the numbers of each immunoreactive cell for the type II (sweet, bitter, or umami receptor cells) and type III (sour and/or salt receptor cells) markers per taste bud in the circumvallate and foliate papillae and compared these numerical features of TBCs per taste bud to those in fungiform papilla and soft palate, which we previously reported. In circumvallate and foliate taste buds, the numbers of TBCs and immunoreactive cells per taste bud increased as a linear function of the maximal cross-sectional taste bud area. Type II cells made up approximately 25% of TBCs irrespective of the regions from which the TBCs arose. In contrast, type III cells in circumvallate and foliate taste buds made up approximately 11% of TBCs, which represented almost 2 times higher than what was observed in the fungiform and soft palate taste buds. The densities (number of immunoreactive cells per taste bud divided by the maximal cross-sectional area of the taste bud) of types II and III cells per taste bud are significantly higher in the circumvallate papillae than in the other regions. The effects of these region-dependent differences on the taste response of the taste bud are discussed.


2008 ◽  
Vol 33 (4) ◽  
pp. 357-362 ◽  
Author(s):  
G.-H. Zhang ◽  
H.-Y. Zhang ◽  
S.-P. Deng ◽  
Y.-M. Qin

Author(s):  
Albert I. Farbman ◽  
Göran Hellekant

The presence of membrane-enclosed vesicles, 50-100 nm in diameter (cf. Fig. 1), has been observed in the taste pores of rats, mice, and rabbits, although little attention has been devoted to their importance. Murray has noted that fungiform papilla taste pores contained more vesicles than foliate papilla pores. In a recent paper we showed that thaumatin, an intensely sweet, basic protein (pl = 12), binds to the vesicles and to microvilli in taste pores. We suggested that the vesicles were shed from the microvilli as a kind of apocrine secretion, and proposed that the shedding of these vesicles may be an important means by which taste bud cells rid themselves of certain stimulus/receptor complexes, particularly when the stimulus is a large and/or highly charged molecule, such as thaumatin. To investigate this hypothesis further, we used electron microscopy to examine taste pores of both vallate and foliate papillae from Rhesus monkeys, before and after stimulation with thaumatin. We also recorded neural activity from the glossopharyngeal and chorda tympani nerves during stimulation with thaumatin and other tastants.Rhesus monkeys were anesthetized with ketamine and given glycopyrrolate to inhibit salivary secretion. Tongues were thoroughly rinsed and the region of the foliate or vallate papilla treated with thaumatin (33 mg/1) or sucrose (0.3M) for 5-10 min. After a brief rinse, papillae were removed surgically. Control papillae were biopsied with no stimulation. Specimens were fixed for 2 h in: 2% paraformaldehyde, 2% glutaraldehyde in phosphate buffer, pH 7.2, rinsed and post-fixed in phosphate-buffered 1% OsO4,dehydrated in ethanols, and embedded in Epon-Araldite. Thin sections were examined in a JEOL-100 CX electron microscope with particular attention to the contents of the taste pores. For neurophysiology, the glossopharyngeal or chorda tympani nerve was exposed, in anesthetized monkeys, by dissection, and electrodes were placed on the nerve. Impulse activity was recorded with a PAR 113 amplifier, monitored over a loudspeaker and an oscilloscope, and fed into a recorder together with the output from an integrator which indicated the type and time of stimulation. The tongue was stimulated with a system that delivers solutions at programmed intervals under conditions of constant flow and temperature. Each stimulation lasted 10 sec, followed by a 30 or 50 sec rinse before the next stimulus. Stimuli were 0.02M citric acid, 0.1 M NaCl, 0.3M sucrose and 33 mg/l thaumatin.


1975 ◽  
Vol 161 (1) ◽  
Author(s):  
Nava Paran ◽  
CarlF.T. Mattern ◽  
RobertI. Henkin
Keyword(s):  

Author(s):  
J. C. Kinnamon ◽  
S. M. Royer

The vertebrate taste bud is an end organ specialized to detect and transduce aqueous chemical stimuli. In mammals most taste buds are located on the tongue. Lingual taste buds are typically distributed over three fields or papillae: fungiform, foliate and circumvallate papillae. Fungiform papillae are found on raised eminences near the tip of the tongue. Each fungiform papilla contains from one to several taste buds. Foliate taste buds are located in epithelial folds (foliate papillae) of the posterolateral surfaces of the tongue. In the rear of the tongue circumvallate taste buds line the walls or trenches surrounding the mushroom-shaped circumvallate (= vallate) papillae. In fish, taste buds are more widely distributed, being located on the tongue, lips, barbels, gill rakers, palatal organ and the body surface. A typical vertebrate taste bud comprises 50 to 150 spindle-shaped cells that lie atop the basal lamina of the tongue.In most mammals, the taste bud cells can be classified as dark or light cells, based on the electron-density of their cytoplasm.


Author(s):  
Sunao Fujimoto ◽  
Raymond G. Murray ◽  
Assia Murray

Taste bud cells in circumvallate papillae of rabbit have been classified into three groups: dark cells; light cells; and type III cells. Unilateral section of the 9th nerve distal to the petrosal ganglion was performed in 18 animals, and changes of each cell type in the denervated buds were observed from 6 hours to 10 days after the operation.Degeneration of nerves is evident at 12 hours (Fig. 1) and by 2 days, nerves are completely lacking in the buds. Invasion by leucocytes into the buds is remarkable from 6 to 12 hours but then decreases. Their extrusion through the pore is seen. Shrinkage and disturbance in arrangement of cells in the buds can be seen at 2 days. Degenerated buds consisting of a few irregular cells and remnants of degenerated cells are present at 4 days, but buds apparently normal except for the loss of nerve elements are still present at 6 days.


2005 ◽  
Vol 173 (4S) ◽  
pp. 139-140
Author(s):  
Sung Kyu Hong ◽  
Cheal Kwak ◽  
Byung Chang Jeong ◽  
Bong Sub Kim ◽  
Hyoen Hoe Kim

Sign in / Sign up

Export Citation Format

Share Document