Enhanced membrane turnover in response to stimuli in the primate taste bud

Author(s):  
Albert I. Farbman ◽  
Göran Hellekant

The presence of membrane-enclosed vesicles, 50-100 nm in diameter (cf. Fig. 1), has been observed in the taste pores of rats, mice, and rabbits, although little attention has been devoted to their importance. Murray has noted that fungiform papilla taste pores contained more vesicles than foliate papilla pores. In a recent paper we showed that thaumatin, an intensely sweet, basic protein (pl = 12), binds to the vesicles and to microvilli in taste pores. We suggested that the vesicles were shed from the microvilli as a kind of apocrine secretion, and proposed that the shedding of these vesicles may be an important means by which taste bud cells rid themselves of certain stimulus/receptor complexes, particularly when the stimulus is a large and/or highly charged molecule, such as thaumatin. To investigate this hypothesis further, we used electron microscopy to examine taste pores of both vallate and foliate papillae from Rhesus monkeys, before and after stimulation with thaumatin. We also recorded neural activity from the glossopharyngeal and chorda tympani nerves during stimulation with thaumatin and other tastants.Rhesus monkeys were anesthetized with ketamine and given glycopyrrolate to inhibit salivary secretion. Tongues were thoroughly rinsed and the region of the foliate or vallate papilla treated with thaumatin (33 mg/1) or sucrose (0.3M) for 5-10 min. After a brief rinse, papillae were removed surgically. Control papillae were biopsied with no stimulation. Specimens were fixed for 2 h in: 2% paraformaldehyde, 2% glutaraldehyde in phosphate buffer, pH 7.2, rinsed and post-fixed in phosphate-buffered 1% OsO4,dehydrated in ethanols, and embedded in Epon-Araldite. Thin sections were examined in a JEOL-100 CX electron microscope with particular attention to the contents of the taste pores. For neurophysiology, the glossopharyngeal or chorda tympani nerve was exposed, in anesthetized monkeys, by dissection, and electrodes were placed on the nerve. Impulse activity was recorded with a PAR 113 amplifier, monitored over a loudspeaker and an oscilloscope, and fed into a recorder together with the output from an integrator which indicated the type and time of stimulation. The tongue was stimulated with a system that delivers solutions at programmed intervals under conditions of constant flow and temperature. Each stimulation lasted 10 sec, followed by a 30 or 50 sec rinse before the next stimulus. Stimuli were 0.02M citric acid, 0.1 M NaCl, 0.3M sucrose and 33 mg/l thaumatin.

1991 ◽  
Vol 65 (6) ◽  
pp. 1452-1463 ◽  
Author(s):  
M. E. Frank

1. Taste sensibilities of neurons in mammalian glossopharyngeal nerves have been inadequately studied, although they innervate the majority of taste buds and may provide unique taste information. 2. Extracellular responses of glossopharyngeal neural units to taste stimuli infused into foliate or vallate papillae were recorded in anesthetized rats. A 0.3-ml/min infusion of stimuli into papillae resulted in short-latency, 5-s nerve-impulse rates that approached 10 times the response rates observed using less invasive means of stimulation. 3. Sucrose, Na saccharin, NaCl, NH4Cl, KCl, HCl, citric acid, acetic acid, MgSO4, and quinine.HCl were effective stimuli for glossopharyngeal neurons at concentrations that have behavioral significance. 4. Response spectra for individual neural units with either foliate or vallate receptive fields fell into three clusters. Forty-six percent were A units that responded most strongly to acids and chloride salts, NH4Cl being the most effective; neither quinine nor sucrose was effective. Twenty-three percent were S units that responded to sugars and saccharin; quinine, salts, and acids were not effective. Thirty-one percent were Q units that responded to quinine; neither NaCl, HCl, nor sucrose was effective stimulus for these fragile units. 5. Glossopharyngeal A neural units were more sensitive to 1 mM HCl than were electrolyte-sensitive H units of the chorda tympani, although both respond generally to salts and acids. Units relatively specific for sodium salts (N units), which are common in the chorda tympani nerve, were not found in the glossopharyngeal nerve, which explains losses in sodium-specific behavior after cutting only the chorda tympani nerve. 6. Q units were the only glossopharyngeal neural units that responded significantly to quinine, and units with similar response spectra do not occur in the chorda tympani nerve. Q units probably mediate aversive reflexes to quinine that are eliminated by cutting only the glossopharyngeal nerve. Glossopharyngeal S neural units were more sensitive to sucrose and are more common than their counterparts in the chorda tympani, although it is not known how they might compare with sugar-sensitive units in the greater superficial petrosal nerve. 7. These data strongly suggest that posterior taste bud fields innervated by the glossopharyngeal nerve are specialized for functions different from those of anterior taste bud fields innervated by the facial nerve.


1995 ◽  
Vol 268 (2) ◽  
pp. R438-R444 ◽  
Author(s):  
H. Izumi ◽  
K. Karita

The aim of the present study was to investigate whether the afferent traffic from the tongue mediated only via the chorda tympani nerve (CTN) can still elicit reflex salivary and vasodilator responses in the cat submandibular gland (SMG) after section of the lingual nerve proper (LNP). Electrical stimulation of the chorda lingual nerve (CLN) at a site approximately 5 mm distal to the intersection of the CLN and the SMG duct elicited salivary and vasodilator responses in the SMG in sympathectomized cats. Both responses were unaffected by section of the LNP. The optimal frequency of CLN stimulation for submandibular salivation and vasodilation was 20 Hz, regardless of whether the LNP had been cut. Prior treatment with the autonomic ganglion blocker hexamethonium (10 mg/kg iv) virtually abolished the salivation and the blood flow increase in SMG. Prior treatment with scopolamine (0.1 mg/kg iv) almost abolished the salivary secretions but had no effect on the vasodilator responses in the SMG elicited by CLN stimulation after LNP section. The mechanism underlying the reflex submandibular salivation mediated by chorda tympani afferents appears to involve parasympathetic muscarinic receptors, but the mechanism for the vasodilator response has yet to be established. These results indicate that afferent traffic passing through the CTN on CLN stimulation is importantly involved in the parasympathetic reflex secretory and vasodilator responses in the cat SMG.


2000 ◽  
Vol 84 (3) ◽  
pp. 1531-1544 ◽  
Author(s):  
Susan J. Hendricks ◽  
Robert E. Stewart ◽  
Gerard L. Heck ◽  
John A. DeSimone ◽  
David L. Hill

In rat, chorda tympani nerve taste responses to Na+ salts increase between roughly 10 and 45 days of age to reach stable, mature magnitudes. Previous evidence from in vitro preparations and from taste nerve responses using Na+ channel blockers suggests that the physiological basis for this developmental increase in gustatory Na+ sensitivity is the progressive addition of functional, Na+ transduction elements (i.e., amiloride-sensitive Na+ channels) to the apical membranes of fungiform papilla taste receptor cells. To avoid potential confounding effects of pharmacological interventions and to permit quantification of aggregate Na+ channel behavior using a kinetic model, we obtained chorda tympani nerve responses to NaCl and sodium gluconate (NaGlu) during receptive field voltage clamp in rats aged from 12–14 to 60 days and older (60+ days). Significant, age-dependent increases in chorda tympani responses to these stimuli occurred as expected. Importantly, apical Na+ channel density, estimated from an apical Na+ channel kinetic model, increased monotonically with age. The maximum rate of Na+response increase occurred between postnatal days 12–14 and 29–31. In addition, estimated Na+ channel affinity increased between 12–14 and 19–23 days of age, i.e., on a time course distinct from that of the maximum rate of Na+response increase. Finally, estimates of the fraction of clamp voltage dropped across taste receptor apical membranes decreased between 19–23 and 29–31 days of age for NaCl but remained stable for NaGlu. The stimulus dependence of this change is consistent with a developmental increase in taste bud tight junctional Cl− ion permeability that lags behind the developmental increase in apical Na+ channel density. A significant, indirect anion influence on apical Na+ channel properties was present at all ages tested. This influence was evident in the higher apparent apical Na+ channel affinities obtained for NaCl relative to NaGlu. This stimulus-dependent modulation of apical Na+ channel apparent affinity relies on differences in the transepithelial potentials between NaCl and NaGlu. These originate from differences in paracellular anion permeability but act also on the driving force for Na+ through apical Na+channels. Detection of such an influence on taste depends fundamentally on the preservation of taste bud polarity and on a direct measure of sensory function, such as the response of primary afferents.


2020 ◽  
Vol 45 (7) ◽  
pp. 533-539
Author(s):  
Aurelie Vandenbeuch ◽  
Courtney E Wilson ◽  
Sue C Kinnamon

Abstract Studies have suggested that communication between taste cells shapes the gustatory signal before transmission to the brain. To further explore the possibility of intragemmal signal modulation, we adopted an optogenetic approach to stimulate sour-sensitive (Type III) taste cells using mice expressing Cre recombinase under a specific Type III cell promoter, Pkd2l1 (polycystic kidney disease-2-like 1), crossed with mice expressing Cre-dependent channelrhodopsin (ChR2). The application of blue light onto the tongue allowed for the specific stimulation of Type III cells and circumvented the nonspecific effects of chemical stimulation. To understand whether taste modality information is preprocessed in the taste bud before transmission to the sensory nerves, we recorded chorda tympani nerve activity during light and/or chemical tastant application to the tongue. To assess intragemmal modulation, we compared nerve responses to various tastants with or without concurrent light-induced activation of the Type III cells. Our results show that light significantly decreased taste responses to sweet, bitter, salty, and acidic stimuli. On the contrary, the light response was not consistently affected by sweet or bitter stimuli, suggesting that activation of Type II cells does not affect nerve responses to stimuli that activate Type III cells.


Since Ludwig made the discovery that the secretory pressure of a gland may double that of the arterial pressure when the outflow of saliva is obstructed, no one, so far as we know, has investigated the circulatory conditions, in the gland under these circumstances. This has been the object of the present research. Our method is as follows:—We place a cannula in the duct of the submaxillary gland of the cat or dog and prepare the chorda tympani nerve for excitation. A second cannula is placed in the carotid artery of the opposite side of the neck. Each cannula is connected, either with a mercurial manometer or, as in our latest experiments, with two Leonard Hill pocket sphygmometer gauges. This gauge consists of a thick-walled glass tube with a fine capillary lumen closed at one end where the lumen expands into a small air chamber. Half an inch from the open end there is a side hole. On placing this end in a solution of potash a fluid meniscus rises to the side hole, which marks the zero of the instrument. (Potash is used to keep the tube free from grease.) One end of a piece of rubber is slipped over the open end of the gauge so as to cover the side hole, and the other end then connected with the cannula. The pressure of the saliva or blood forces the meniscus up the gauge, which is graduated in millimetres of mercury and acts as a spring manometer. We find these gauges very convenient to use as they can be placed side by side and the readings compared at a glance. Before making the connections with the gauges we expose the veins which course over the submaxillary gland and contribute to the formation of the external jugular vein. Having found the vein which issues from the gland we tie all the other veins, leaving this one free so that at the right moment we can clip the external jugular and open it so as to observe the outflow of blood from the gland. When all is thus prepared we excite the chorda tympani nerve. As soon as the secretory pressure rises above the arterial pressure we open the vein and observe the flow of blood. We find that under these conditions the blood continues to flow and issues from the vein in a fairly ample stream of a colour more arterial than venous. The gland itself feels tense to the touch. By squeezing the gland we find that we can further raise the pressure of the secretion, while at the same time we impede the outflow of blood. On allowing the secretory pressure to fall to atmospheric pressure we find that the outflow from the vein becomes much ampler; in one experiment it was approximately doubled, e. g. 40 drops in 15 seconds as compared with 27 drops in 20 seconds at the highest secretory pressure (240 mm. Hg.). In some experiments we observed the venous outflow from the time we began to excite the chorda tympani. Under these circumstances we find that the outflow from the gland at rest is very slow and the blood venous in colour. On stimulating the chorda, the outflow becomes very ample, the blood arterial in colour, and remains so during the rise of secretory pressure until this pressure rises higher than the arterial, when the outflow becomes lessened and the blood less arterial in colour.


1990 ◽  
Vol 258 (3) ◽  
pp. R820-R826 ◽  
Author(s):  
A. C. Spector ◽  
G. J. Schwartz ◽  
H. J. Grill

Electrophysiological data support the existence of sodium-specific taste receptors that appear to be limited to the anterior tongue. However, previous behavioral findings suggest that bilateral transection of the chorda tympani nerve (CTn) has minimal consequences on NaCl intake and preference. This study employed a conditioned avoidance procedure to measure detection thresholds to NaCl and sucrose both before and after bilateral transection of the CTn. Rats were trained to maintain spout contact in response to water presentations (70 microliters) and to avoid spout contact when a taste solution (70 microliters) was presented. In experiment 1, all rats (n = 3) showed statistically significant impairments in the detectability of NaCl after bilateral section of the CTn. The mean increase in the NaCl detection threshold was 1.41 log units. In contrast, sucrose threshold in these same rats was marginally affected by CTn section (mean increase = 0.22 log units). Experiment 2 (n = 4) replicated the findings of the first experiment. The mean increase in the NaCl detection threshold was 2.23 log units. Sucrose threshold in these rats was, again, only marginally affected by CTn section (mean increase = 0.83 log units). Histological examination of the anterior tongue from the rats in experiment 2 indicated that the CTn transections were complete. These findings reveal that the anterior oral receptive field (innervated by the CTn) containing only 15% of the total taste bud population is critical for the normal detection of NaCl.


1988 ◽  
Vol 91 (6) ◽  
pp. 861-896 ◽  
Author(s):  
M E Frank ◽  
S L Bieber ◽  
D V Smith

Electrophysiological measurements of nerve impulse frequencies were used to explore the organization of taste sensibilities in single fibers of the hamster chorda tympani nerve. Moderately intense taste solutions that are either very similar or easily discriminated were applied to the anterior lingual surface. 40 response profiles or 13 stimulus activation patterns were considered variables and examined with multivariate statistical techniques. Three kinds of response profiles were seen in fibers that varied in their overall sensitivity to taste solutions. One profile (S) showed selectivity for sweeteners, a second (N) showed selectivity for sodium salts, and a third (H) showed sensitivity to salts, acids, and other compounds. Hierarchical cluster analysis indicated that profiles fell into discrete classes. Responses to many pairs of effective stimuli were covariant across profiles within a class, but some acidic stimuli had more idiosyncratic effects. Factor analysis of profiles identified two common factors, accounting for 77% of the variance. A unipolar factor was identified with the N profile, and a bipolar factor was identified with the S profile and its opposite, the H profile. Three stimulus activation patterns were elicited by taste solutions that varied in intensity of effect. Hierarchical cluster analysis indicated that the patterns fell into discrete classes. Factor analysis of patterns identified three common unipolar factors accounting for 82% of the variance. Eight stimuli (MgSO4, NH4Cl, KCl, citric acid, acetic acid, urea, quinine HCl, HCl) selectively activated fibers with H profiles, three stimuli (fructose, Na saccharin, sucrose) selectively activated fibers with S profiles, and two stimuli (NaNO3, NaCl) activated fibers with N profiles more strongly than fibers with H profiles. Stimuli that evoke different patterns taste distinct to hamsters. Stimuli that evoke the same pattern taste more similar. It was concluded that the hundreds of peripheral taste neurons that innervate the anterior tongue play one of three functional roles, providing information about one of three features that are shared by different chemical solutions.


2015 ◽  
Vol 113 (3) ◽  
pp. 1034-1040 ◽  
Author(s):  
Archana Kumari ◽  
Alexandre N. Ermilov ◽  
Benjamin L. Allen ◽  
Robert M. Bradley ◽  
Andrzej A. Dlugosz ◽  
...  

Taste sensation on the anterior tongue requires chorda tympani nerve function and connections with continuously renewing taste receptor cells. However, it is unclear which signaling pathways regulate the receptor cells to maintain chorda tympani sensation. Hedgehog (HH) signaling controls cell proliferation and differentiation in numerous tissues and is active in taste papillae and taste buds. In contrast, uncontrolled HH signaling drives tumorigenesis, including the common skin cancer, basal cell carcinoma. Systemic HH pathway inhibitors (HPIs) lead to basal cell carcinoma regression, but these drugs cause severe taste disturbances. We tested the hypothesis that taste disruption by HPIs reflects a direct requirement for HH signaling in maintaining taste organs and gustatory sensation. In mice treated with the HPI LDE225 up to 28 days, HH-responding cells were lost in fungiform papilla epithelium, and papillae acquired a conical apex. Taste buds were either absent or severely reduced in size in more than 90% of aberrant papillae. Taste bud remnants expressed the taste cell marker keratin 8, and papillae retained expression of nerve markers, neurofilament and P2X3. Chorda tympani nerve responses to taste stimuli were markedly reduced or absent in LDE225-treated mice. Responses to touch were retained, however, whereas cold responses were retained after 16 days of treatment but lost after 28 days. These data identify a critical, modality-specific requirement for HH signaling in maintaining taste papillae, taste buds and neurophysiological taste function, supporting the proposition that taste disturbances in HPI-treated patients are an on-target response to HH pathway blockade in taste organs.


Sign in / Sign up

Export Citation Format

Share Document