Co-purification of a small RNA species with multicatalytic proteinase (proteasome) from rat liver

FEBS Letters ◽  
1991 ◽  
Vol 279 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Helen E. Skilton ◽  
Ian C. Eperon ◽  
A.Jennifer Rivett
1991 ◽  
Vol 278 (1) ◽  
pp. 171-177 ◽  
Author(s):  
A J Rivett ◽  
S T Sweeney

The multicatalytic proteinase (MCP) is a high-molecular-mass non-lysosomal proteinase that gives rise to a characteristic pattern of bands of molecular mass 22-34 kDa on SDS/PAGE gels. Isoelectric-focusing gels of the enzyme purified from rat liver show 16 bands with isoelectric points in the range of pH 5-8.5. Two-dimensional PAGE gels reveal that there are more than the previously reported 13 polypeptides associated with the MCP from rat liver and show a pattern of 15-20 major spots and several minor ones, similar to that of MCP isolated from some other sources. Possible relationships between the different polypeptides were investigated by immunoblot analysis of electrophoretically purified proteinase subunits with affinity-purified subunit-specific antibodies as well as antibodies raised against individual denatured subunits of the complex. The results demonstrate that many of the major polypeptide components of the MCP complex are antigenically distinct. Moreover comparison of immunoreactive material in crude cell extracts with that in purified MCP preparations has shown that the polypeptides are not derived from a smaller number of higher-molecular-mass subunits. Also, individual subunits have the same apparent molecular mass in a variety of rat tissues, suggesting close similarity between MCPs of different tissues. The highest concentrations of MCP subunits occur in liver and kidney. Gel-filtration analysis of crude extracts has demonstrated that MCP polypeptides are also associated with a higher-molecular-mass complex, which may be the 26 S proteinase that has been implicated in the degradation of ubiquitin-protein conjugates.


2015 ◽  
Vol 40 (1) ◽  
pp. 4-7 ◽  
Author(s):  
Kasey C. Vickers ◽  
Leslie A. Roteta ◽  
Holli Hucheson-Dilks ◽  
Leng Han ◽  
Yan Guo
Keyword(s):  

Biochemistry ◽  
1977 ◽  
Vol 16 (20) ◽  
pp. 4520-4525 ◽  
Author(s):  
Gary Zieve ◽  
Bernd Joachim Benecke ◽  
Sheldon Penman
Keyword(s):  

Reproduction ◽  
2017 ◽  
Vol 153 (6) ◽  
pp. 785-796 ◽  
Author(s):  
Cai Chen ◽  
Han Wu ◽  
Dan Shen ◽  
Saisai Wang ◽  
Li Zhang ◽  
...  

The similarities and differences of small RNAs in seminal plasma, epididymal sperm and ejaculated sperm remain largely undefined. We conducted a systematic comparative analysis of small RNA profiles in pig ejaculated sperm, epididymal sperm and seminal plasma and found that the diversity distribution of small RNA species was generally similar, whereas the abundance of small RNAs is dramatically different across the three libraries; miRNAs and small RNAs derived from rRNA, tRNA, small nuclear RNA, 7SK RNA, NRON RNA and cis-regulatory RNA were enriched in the three libraries, but piRNA was absent. A large population of small RNAs from ejaculated sperm are ejaculated sperm specific, and only 8–30% of small RNAs overlapped with those of epididymal sperm or seminal plasma and a small proportion (5–18%) of small RNAs were shared in the three libraries, suggesting that, in addition to the testes, sperm RNAs may also originate from seminal plasma, epididymis as well as other resources. Most miRNAs were co-distributed but differentially expressed across the three libraries, with epididymal sperm exhibiting the highest abundance, followed by ejaculated sperm and seminal plasma. The prediction of target genes of the top 10 highly expressed miRNAs across the three libraries revealed that these miRNAs may be involved in spermatogenesis, zygote development and the interaction between the environment and animals. Our study provides the first description of the similarities and differences of small RNA profiles in ejaculated sperm, epididymal sperm and seminal plasma and indicates that sperm RNA may have origins other than the testes.


1993 ◽  
Vol 292 (3) ◽  
pp. 857-862 ◽  
Author(s):  
H Djaballah ◽  
A J Rowe ◽  
S E Harding ◽  
A J Rivett

The multicatalytic proteinase complex or proteasome is a high-molecular-mass multisubunit proteinase which is found in the nucleus and cytoplasm of eukaryotic cells. Electron microscopy of negatively stained rat liver proteinase preparations suggests that the particle has a hollow cylindrical shape (approximate width 11 nm and height 17 nm using methylamine tungstate as the negative stain) with a pseudo-helical arrangement of subunits rather than the directly stacked arrangement suggested previously. The side-on view has a 2-fold rotational symmetry, while end-on there appears to be six or seven subunits around the ring. This model is very different from that proposed by others for the proteinase from rat liver but resembles the structure of the simpler archaebacterial proteasome. The possibility of conformational changes associated with the addition of effectors of proteolytic activity has been investigated by sedimentation velocity analysis and dynamic light-scattering measurements. The results provide the first direct evidence for conformational changes associated with the observed positive co-operativity in one component of the peptidylglutamylpeptide hydrolase activity as well as with the stimulation of peptidylglutamylpeptide hydrolase activities by MnCl2. In the latter case, there appears to be a correlation between changes in the shape of the molecule and the effect on activity. KCl and low concentrations of SDS may also act by inducing conformational changes within the complex. Sedimentation-velocity measurements also provide evidence for the formation of intermediates during dissociation of the complex by urea, guanidinium chloride or sodium thiocyanate. Dissociation of the complex either by these agents or by treatment at low pH leads to inactivation of its proteolytic components. The results suggest that activation and inhibition of the various proteolytic activities may be mediated by measurable changes in size and shape of the molecules.


2008 ◽  
Author(s):  
Steven A. Whitham ◽  
Amit Gal-On ◽  
Tzahi Arazi

The mechanisms underlying the development of symptoms in response to virus infection remain to be discovered in plants. Insight into symptoms induced by potyviruses comes from evidence implicating the potyviral HC-Pro protein in symptom development. In particular, recent studies link the development of symptoms in infected plants to HC-Pro's ability to interfere with small RNA metabolism and function in plant hosts. Moreover, mutation of the highly conserved FRNK amino acid motif to FINK in the HC-Pro of Zucchini yellow mosaic virus (ZYMV) converts a severe strain into an asymptomatic strain, but does not affect virus accumulation in cucurbit hosts. The ability of this FINK mutation to uncouple symptoms from virus accumulation creates a unique opportunity to study symptom etiology, which is usually confounded by simultaneous attenuation of both symptoms and virus accumulation. Our goal was to determine how mutations in the conserved FRNK motif affect host responses to potyvirus infection in cucurbits and Arabidopsis thaliana. Our first objective was to define those amino acids in the FRNK motif that are required for symptoms by mutating the FRNK motif in ZYMV and Turnip mosaic virus (TuMV). Symptom expression and accumulation of resulting mutant viruses in cucurbits and Arabidopsis was determined. Our second objective was to identify plant genes associated with virus disease symptoms by profiling gene expression in cucurbits and Arabidopsis in response to mutant and wild type ZYMV and TuMV, respectively. Genes from the two host species that are differentially expressed led us to focus on a subset of genes that are expected to be involved in symptom expression. Our third objective was to determine the functions of small RNA species in response to mutant and wild type HC-Pro protein expression by monitoring the accumulation of small RNAs and their targets in Arabidopsis and cucurbit plants infected with wild type and mutant TuMV and ZYMV, respectively. We have found that the maintenance of the charge of the amino acids in the FRNK motif of HC-Pro is required for symptom expression. Reduced charge (FRNA, FRNL) lessen virus symptoms, and maintain the suppression of RNA silencing. The FRNK motif is involved in binding of small RNA species including microRNAs (miRNA) and short interfering RNAs (siRNA). This binding activity mediated by the FRNK motif has a role in protecting the viral genome from degradation by the host RNA silencing system. However, it also provides a mechanism by which the FRNK motif participates in inducing the symptoms of viral infection. Small RNA species, such as miRNA and siRNA, can regulate the functions of plant genes that affect plant growth and development. Thus, this binding activity suggests a mechanism by which ZYMVHC-Pro can interfere with plant development resulting in disease symptoms. Because the host genes regulated by small RNAs are known, we have identified candidate host genes that are expected to play a role in symptoms when their regulation is disrupted during viral infections. As a result of this work, we have a better understanding of the FRNK amino acid motif of HC-Pro and its contribution to the functions of HC-Pro, and we have identified plant genes that potentially contribute to symptoms of virus infected plants when their expression becomes misregulated during potyviral infections. The results set the stage to establish the roles of specific host genes in viral pathogenicity. The potential benefits include the development of novel strategies for controlling diseases caused by viruses, methods to ensure stable expression of transgenes in genetically improved crops, and improved potyvirus vectors for expression of proteins or peptides in plants.   


1973 ◽  
Vol 13 (5) ◽  
pp. 203-212
Author(s):  
Toshimichi IKEMURA
Keyword(s):  
E Coli ◽  

2019 ◽  
Vol 65 (12) ◽  
pp. 1581-1591 ◽  
Author(s):  
Morgane Meistertzheim ◽  
Tobias Fehlmann ◽  
Franziska Drews ◽  
Marcello Pirritano ◽  
Gilles Gasparoni ◽  
...  

Abstract BACKGROUND Small RNAs are key players in the regulation of gene expression and differentiation. However, many different classes of small RNAs (sRNAs) have been described with distinct biogenesis pathways and, as a result, with different biochemical properties. To analyze sRNAs by deep sequencing, complementary DNA synthesis requires manipulation of the RNA molecule itself. Thus, enzymatic activities during library preparation bias the library content owing to biochemical criteria. METHODS We compared 4 different manipulations of RNA for library preparation: (a) a ligation-based procedure allowing only 5′-mono-phosphorylated RNA to enter the library, (b) a ligation-based procedure allowing additional 5′-triphosphates and Cap structures, (c) a ligation-independent, template-switch-based library preparation, and (d) a template-switch-based library preparation allowing 3′-phosphorylated RNAs to enter the library. RESULTS Our data show large differences between ligation-dependent and ligation-independent libraries in terms of their preference for individual sRNA classes such as microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), and transfer RNA fragments. Moreover, the miRNA composition is different between both procedures, and more microRNA isoforms (isomiRs) can be identified after pyrophosphatase treatment. piRNAs are enriched in template-switch libraries, and this procedure apparently includes more different RNA species. CONCLUSIONS Our data indicate that miRNAomics from both methods will hardly be comparable. Ligation-based libraries enrich for canonical miRNAs, which thus may be suitable methods for miRNAomics. Template-switch libraries contain increased numbers and different compositions of fragments and long RNAs. Following different interests for other small RNA species, ligation-independent libraries appear to show a more realistic sRNA landscape with lower bias against biochemical modifications.


Sign in / Sign up

Export Citation Format

Share Document