Easy decanter centrifuge site testing

1992 ◽  
Vol 29 (3) ◽  
pp. 192
2021 ◽  
pp. 105148
Author(s):  
Thomas Schubert ◽  
Irem Ergin ◽  
Fiona Panetta ◽  
Jörg Hinrichs ◽  
Zeynep Atamer

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2499
Author(s):  
Michael Dillon ◽  
Maja A. Zaczek-Moczydlowska ◽  
Christine Edwards ◽  
Andrew D. Turner ◽  
Peter I. Miller ◽  
...  

In the past twenty years marine biotoxin analysis in routine regulatory monitoring has advanced significantly in Europe (EU) and other regions from the use of the mouse bioassay (MBA) towards the high-end analytical techniques such as high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS). Previously, acceptance of these advanced methods, in progressing away from the MBA, was hindered by a lack of commercial certified analytical standards for method development and validation. This has now been addressed whereby the availability of a wide range of analytical standards from several companies in the EU, North America and Asia has enhanced the development and validation of methods to the required regulatory standards. However, the cost of the high-end analytical equipment, lengthy procedures and the need for qualified personnel to perform analysis can still be a challenge for routine monitoring laboratories. In developing regions, aquaculture production is increasing and alternative inexpensive Sensitive, Measurable, Accurate and Real-Time (SMART) rapid point-of-site testing (POST) methods suitable for novice end users that can be validated and internationally accepted remain an objective for both regulators and the industry. The range of commercial testing kits on the market for marine toxin analysis remains limited and even more so those meeting the requirements for use in regulatory control. Individual assays include enzyme-linked immunosorbent assays (ELISA) and lateral flow membrane-based immunoassays (LFIA) for EU-regulated toxins, such as okadaic acid (OA) and dinophysistoxins (DTXs), saxitoxin (STX) and its analogues and domoic acid (DA) in the form of three separate tests offering varying costs and benefits for the industry. It can be observed from the literature that not only are developments and improvements ongoing for these assays, but there are also novel assays being developed using upcoming state-of-the-art biosensor technology. This review focuses on both currently available methods and recent advances in innovative methods for marine biotoxin testing and the end-user practicalities that need to be observed. Furthermore, it highlights trends that are influencing assay developments such as multiplexing capabilities and rapid POST, indicating potential detection methods that will shape the future market.


Author(s):  
Xu Yang ◽  
Zhaohui Shang ◽  
Keliang Hu ◽  
Yi Hu ◽  
Bin Ma ◽  
...  

Abstract Dome A in Antarctica has many characteristics that make it an excellent site for astronomical observations, from the optical to the terahertz. Quantitative site testing is still needed to confirm the site’s properties. In this paper, we present a statistical analysis of cloud cover and aurora contamination from the Kunlun Cloud and Aurora Monitor (KLCAM). KLCAM is an automatic, unattended all-sky camera aiming for long-term monitoring of the usable observing time and optical sky background at Dome A. It was installed at Dome A in January 2017, worked through the austral winter, and collected over 47,000 images over 490 days. A semi-quantitative visual data analysis of cloud cover and auroral contamination was carried out by five individuals. The analysis shows that the night sky was free of clouds for 83 per cent of the time, which ranks Dome A highly in a comparison with other observatory sites. Although aurorae were detected somewhere on an image for nearly 45 per cent of the time, the chance of a point on the sky being affected by an aurora is small. The strongest auroral emission lines can be filtered out with customized filters.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 564
Author(s):  
Hong Shen ◽  
Longkun Yu ◽  
Xu Jing ◽  
Fengfu Tan

The turbulence moment of order m (μm) is defined as the refractive index structure constant Cn2 integrated over the whole path z with path-weighting function zm. Optical effects of atmospheric turbulence are directly related to turbulence moments. To evaluate the optical effects of atmospheric turbulence, it is necessary to measure the turbulence moment. It is well known that zero-order moments of turbulence (μ0) and five-thirds-order moments of turbulence (μ5/3), which correspond to the seeing and the isoplanatic angles, respectively, have been monitored as routine parameters in astronomical site testing. However, the direct measurement of second-order moments of turbulence (μ2) of the whole layer atmosphere has not been reported. Using a star as the light source, it has been found that μ2 can be measured through the covariance of the irradiance in two receiver apertures with suitable aperture size and aperture separation. Numerical results show that the theoretical error of this novel method is negligible in all the typical turbulence models. This method enabled us to monitor μ2 as a routine parameter in astronomical site testing, which is helpful to understand the characteristics of atmospheric turbulence better combined with μ0 and μ5/3.


2020 ◽  
Vol 20 (6) ◽  
pp. 080 ◽  
Author(s):  
Lu Feng ◽  
Jin-Xin Hao ◽  
Zi-Huang Cao ◽  
Jin-Min Bai ◽  
J Yang ◽  
...  

2010 ◽  
Author(s):  
Gabriel Prieto ◽  
Joanna E. Thomas-Osip ◽  
Mark M. Phillips ◽  
Patrick McCarthy ◽  
Matt Johns

2017 ◽  
Vol 129 (980) ◽  
pp. 105002
Author(s):  
Germán Chaparro Molano ◽  
Oscar Leonardo Ramírez Suárez ◽  
Oscar Alberto Restrepo Gaitán ◽  
Alexander Marcial Martínez Mercado

Sign in / Sign up

Export Citation Format

Share Document