Jet engine exhaust gas temperature measured

1957 ◽  
Vol 264 (4) ◽  
pp. 300
2012 ◽  
Vol 424-425 ◽  
pp. 347-351 ◽  
Author(s):  
Yong Sheng Shi ◽  
Jun Jie Yue ◽  
Yun Xue Song

Based on the research of complexity and non-linearity of aero-engine exhaust gas temperature (EGT) system, a regularization chaotic prediction model was proposed to build short time forecasting model of EGT. In this paper, in order to gain the best parameter to improve the accuracy of the forecasting model, a simple search algorithm arithmetic was adopted. The simulation analysis shows that the proposed forecasting model obviously exceeded the traditional chaotic forecasting model on prediction accuracy. Therefore, this arithmetic is efficient and feasible for a short-term prediction of aero-engine exhaust gas temperature


Aviation ◽  
2021 ◽  
Vol 25 (1) ◽  
pp. 65-72
Author(s):  
Andrius Dubovas ◽  
Domantas Bručas

The characteristics of the combustion chamber of turbo jet engine with various parameters are examined in this article. The scientific works of other authors analyzing operating parameters of the jet engines were reviewed. Their recommendations were considered. Computer simulations of the combustion chamber were performed using different combustion reactions. The exhaust gas temperature and its dependence on the combustion mixture were determined. A practical study was also carried out, during which the experimental exhaust gas temperature was measured, and the trends of temperature change were determined. After analyzing both theoretical and practical results, the conclusions are presented.


2017 ◽  
Vol 47 (1) ◽  
pp. 25-28 ◽  
Author(s):  
Premysl Janu ◽  
Sang Van Doan

One of the most important systems of an aircraft jet engine is exhaust gas temperature measurement system that ensure right function of the engine. Temperature of the gas flowing from the engine turbine is quite high. There is one way, how to measure high temperature and it is by thermocouple. So the main aim of the paper is to describe creation and correct function analysis of a thermocouple simulator. Thermocouple generates very low voltage depending on a temperature that ranges from units micro-volts to several tens of millivolts. Generating of such low voltage using simulator is not easy, because this voltage may move at levels of noise. Voltage generation is performed by digital-analogue converter, which is controlled by a microcontroller via SPI bus. The generated voltage is further reduced to a level corresponding to the voltage output of the thermocouple. Several calibration waveforms are performed belonging to appropriate thermocouple type for multifunctional use. Only positive temperatures are generated, because exhaust gas temperature measurement system is aimed at high temperatures. The power supply circuit offers two options. It is supply from accumulator for its portability or from the laboratory power supply. Surface mounted devices are selected in terms of module miniaturization. The newest device base is chosen for modern design of the module. The temperature waveform is generated by the way of polynomial approximation with correction. Dependence of real generated voltage on the voltage, which is defined by appropriate thermocouple type standard and errors evaluation, is used as a proof of proper function.


2020 ◽  
pp. 246-246
Author(s):  
Dingzhe Li ◽  
Jingbo Peng ◽  
Dawei He

In this paper, an aero-engine exhaust gas temperature (EGT) prediction model based on LightGBM optimized by the chaotic rate bat algorithm (CRBA) is proposed to monitor aero-engine performance effectively. By introducing chaotic rate, the convergence speed and precision of bat algorithm are im-proved, which CRBA is obtained. LightGBM is optimized by CRBA and it is used to predict EGT. Taking a type of aero-engine for example, some relevant performance parameters from the flight data measured by airborne sensors were selected as input variables and EGT as output variables. The data set is divided into training and test sets, and the CRBA-LightGBM model is trained and tested, and compared with ensemble algorithms such as RF, XGBoost, GBDT, LightGBM and BA-LightGBM. The results show that the mean absolute error (MAE) of this method in the prediction of EGT (after normalization) is 0.0065, the mean absolute percentage error (MAPE) is 0.77% and goodness of fit R2 has reached to 0.9469. The prediction effect of CRBA-LightGBM is better than other comparison algorithms and it is suitable for aero-engine condition monitoring.


2015 ◽  
Vol 656-657 ◽  
pp. 538-543 ◽  
Author(s):  
Sirichai Jirawongnuson ◽  
Worathep Wachirapan ◽  
Tul Suthiprasert ◽  
Ekathai Wirojsakunchai

In this research study, a synthetic exhaust gas system is employed to simulate various exhaust conditions similar to those from conventional diesel and Dual Fuel-Premixed Charge Compression Ignition (DF-PCCI) combustion. OEM DOC is tested to compare the effectiveness of reducing CO from both exhaust characteristics. Variations of the temperature and the concentration of CO, THC, and O2 are done to investigate DOC performance on CO reductions according to Design of Experiment (DOE) concept. The results showed that in DF-PCCI exhaust conditions, DOC requires higher exhaust gas temperature as well as O2 concentration to reduce CO emissions.


Author(s):  
O. Léonard ◽  
J. P. Thomas ◽  
S. Borguet

In 1997 the Turbomachinery Group of the University of Liège decided to acquire a small jet engine to illustrate the courses in propulsion and to provide the students with the opportunity to get some experience on data measurement, acquisition, and interpretation. Among others, the SR-30 engine from Turbine Technology Ltd. Chetek, WI was chosen. It consists of a single spool, single flow engine with a centrifugal compressor, a reversed combustion chamber, an axial turbine, and a fixed convergent nozzle. This engine was installed on a test bench allowing for manual control and providing fuel and oil to the engine. The original setup included measurements of intercomponent pressure and temperatures, exhaust gas temperature, and rotational speed. Since then both the engine and the test bench have been deeply modified. These modifications were led by a triple objective: the improvement and the enrichment of the measurement chain, the widening of the engine’s operational domain, and, last but not the least, the wish to offer appealing hands-on projects to the students. All these modifications were performed at the University of Liège and were conducted by the students as part of their Master theses. Several performance models of the engine were developed to support data validation and engine condition diagnostic. This paper summarizes the developments conducted with and by the students, and presents the experience that was gained by using this engine as a support for education.


Sign in / Sign up

Export Citation Format

Share Document