Gene expression of matrix metalloproteinases are observed in the stromal cells and mediated by cytokines in gastrointestinal tract cancers

1995 ◽  
Vol 108 (4) ◽  
pp. A522
Author(s):  
Y. Otani ◽  
Y. Sakurai ◽  
K. Kameyama ◽  
K. Kumai ◽  
I. Okazaki ◽  
...  
FEBS Journal ◽  
2018 ◽  
Vol 285 (12) ◽  
pp. 2337-2359 ◽  
Author(s):  
Arjen Gebraad ◽  
Roman Kornilov ◽  
Sippy Kaur ◽  
Susanna Miettinen ◽  
Suvi Haimi ◽  
...  

1995 ◽  
Vol 43 (2) ◽  
pp. 203-209 ◽  
Author(s):  
S M de la Monte ◽  
T Quertermous ◽  
C C Hong ◽  
K D Bloch

Endothelin 2 (ET2), also referred to as vasoactive intestinal contractor peptide, is a member of a family of vasoactive peptides. ET2 is a potent constrictor of intestinal smooth muscle, and the mRNA that encodes it has been detected in murine intestinal extracts. To further investigate the potential physiological roles of ET2, we characterized the cellular distribution of ET2 gene expression in adult rat gastrointestinal tract. Using an RNAse protection assay, an overall proximal to distal gradient of increasing ET2 gene expression was observed from stomach to colon. In situ hybridization studies confirmed this finding and demonstrated ET2 mRNA localized in lamina propria stromal cells. Moreover, ET2 gene expression in stromal cells increased from crypt to villous tip. The results demonstrate that ET2 is produced by stromal cells in villi throughout the intestine. Increased ET2 gene expression at the villous tip is associated with more mature overlying epithelial cells, suggesting a possible role for this vasoactive peptide in intestinal epithelial differentiation or secretory activity.


2021 ◽  
Vol 22 (3) ◽  
pp. 1027
Author(s):  
Christian Behm ◽  
Michael Nemec ◽  
Alice Blufstein ◽  
Maria Schubert ◽  
Xiaohui Rausch-Fan ◽  
...  

The periodontal ligament (PDL) responds to applied orthodontic forces by extracellular matrix (ECM) remodeling, in which human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) are largely involved by producing matrix metalloproteinases (MMPs) and their local inhibitors (TIMPs). Apart from orthodontic forces, the synthesis of MMPs and TIMPs is influenced by the aseptic inflammation occurring during orthodontic treatment. Interleukin (IL)-1β is one of the most abundant inflammatory mediators in this process and crucially affects the expression of MMPs and TIMPs in the presence of cyclic low-magnitude orthodontic tensile forces. In this study we aimed to investigate, for the first time, how IL-1β induced expression of MMPs, TIMPs and how IL-1β in hPDL-MSCs was changed after applying in vitro low-magnitude orthodontic tensile strains in a static application mode. Hence, primary hPDL-MSCs were stimulated with IL-1β in combination with static tensile strains (STS) with 6% elongation. After 6- and 24 h, MMP-1, MMP-2, TIMP-1 and IL-1β expression levels were measured. STS alone had no influence on the basal expression of investigated target genes, whereas IL-1β caused increased expression of these genes. In combination, they increased the gene and protein expression of MMP-1 and the gene expression of MMP-2 after 24 h. After 6 h, STS reduced IL-1β-induced MMP-1 synthesis and MMP-2 gene expression. IL-1β-induced TIMP-1 gene expression was decreased by STS after 6- and 24-h. At both time points, the IL-1β-induced gene expression of IL-1β was increased. Additionally, this study showed that fetal bovine serum (FBS) caused an overall suppression of IL-1β-induced expression of MMP-1, MMP-2 and TIMP-1. Further, it caused lower or opposite effects of STS on IL-1β-induced expression. These observations suggest that low-magnitude orthodontic tensile strains may favor a more inflammatory and destructive response of hPDL-MSCs when using a static application form and that this response is highly influenced by the presence of FBS in vitro.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashley A. Krull ◽  
Deborah O. Setter ◽  
Tania F. Gendron ◽  
Sybil C. L. Hrstka ◽  
Michael J. Polzin ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) have been studied with increasing intensity as clinicians and researchers strive to understand the ability of MSCs to modulate disease progression and promote tissue regeneration. As MSCs are used for diverse applications, it is important to appreciate how specific physiological environments may stimulate changes that alter the phenotype of the cells. One need for neuroregenerative applications is to characterize the spectrum of MSC responses to the cerebrospinal fluid (CSF) environment after their injection into the intrathecal space. Mechanistic understanding of cellular biology in response to the CSF environment may predict the ability of MSCs to promote injury repair or provide neuroprotection in neurodegenerative diseases. Methods In this study, we characterized changes in morphology, metabolism, and gene expression occurring in human adipose-derived MSCs cultured in human (hCSF) or artificial CSF (aCSF) as well as examined relevant protein levels in the CSF of subjects treated with MSCs for amyotrophic lateral sclerosis (ALS). Results Our results demonstrated that, under intrathecal-like conditions, MSCs retained their morphology, though they became quiescent. Large-scale transcriptomic analysis of MSCs revealed a distinct gene expression profile for cells cultured in aCSF. The aCSF culture environment induced expression of genes related to angiogenesis and immunomodulation. In addition, MSCs in aCSF expressed genes encoding nutritional growth factors to expression levels at or above those of control cells. Furthermore, we observed a dose-dependent increase in growth factors and immunomodulatory cytokines in CSF from subjects with ALS treated intrathecally with autologous MSCs. Conclusions Overall, our results suggest that MSCs injected into the intrathecal space in ongoing clinical trials remain viable and may provide a therapeutic benefit to patients.


2021 ◽  
Vol 22 (4) ◽  
pp. 1901
Author(s):  
Brielle Jones ◽  
Chaoyang Li ◽  
Min Sung Park ◽  
Anne Lerch ◽  
Vimal Jacob ◽  
...  

Mesenchymal stromal cells derived from the fetal placenta, composed of an amnion membrane, chorion membrane, and umbilical cord, have emerged as promising sources for regenerative medicine. Here, we used next-generation sequencing technology to comprehensively compare amniotic stromal cells (ASCs) with chorionic stromal cells (CSCs) at the molecular and signaling levels. Principal component analysis showed a clear dichotomy of gene expression profiles between ASCs and CSCs. Unsupervised hierarchical clustering confirmed that the biological repeats of ASCs and CSCs were able to respectively group together. Supervised analysis identified differentially expressed genes, such as LMO3, HOXA11, and HOXA13, and differentially expressed isoforms, such as CXCL6 and HGF. Gene Ontology (GO) analysis showed that the GO terms of the extracellular matrix, angiogenesis, and cell adhesion were significantly enriched in CSCs. We further explored the factors associated with inflammation and angiogenesis using a multiplex assay. In comparison with ASCs, CSCs secreted higher levels of angiogenic factors, including angiogenin, VEGFA, HGF, and bFGF. The results of a tube formation assay proved that CSCs exhibited a strong angiogenic function. However, ASCs secreted two-fold more of an anti-inflammatory factor, TSG-6, than CSCs. In conclusion, our study demonstrated the differential gene expression patterns between ASCs and CSCs. CSCs have superior angiogenic potential, whereas ASCs exhibit increased anti-inflammatory properties.


1999 ◽  
Vol 14 (Suppl_3) ◽  
pp. 260-260
Author(s):  
H. Itoh ◽  
K. Isaka ◽  
S. Usuda ◽  
A. Fujitoh ◽  
H. Nishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document