Thyroid stimulating hormone distribution in the pars distalis of the Japanese quail

1975 ◽  
Vol 26 (2) ◽  
pp. 274-276 ◽  
Author(s):  
W.J. Radke ◽  
R.B. Chiasson
2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Leonard Cheung ◽  
Alexandre Daly ◽  
Michelle Brinkmeier ◽  
Sally Ann Camper

Abstract We implemented single-cell RNA sequencing (scRNAseq) technology as a discovery tool to identify factors enriched in differentiated thyrotropes. Thyroid-stimulating hormone (TSH) is produced in the pars distalis of the anterior pituitary (AP) and primarily acts on the thyroid gland to regulate metabolism through T3/T4. However, TSH is also produced by cells in the pars tuberalis (PT), which is comprised of a thin layer of cells that extends rostrally from the pars distalis along the pituitary stalk to the median eminence in the hypothalamus. TSH produced by PT thyrotropes acts on hypothalamic tanycytes to regulate seasonal reproduction. PT thyrotropes likely descend from rostral tip thyrotropes that arise at e12.5 of mouse development, which transcribe the TSH beta subunit (Tshb) without detectable expression of the transcription factor POU1F1. POU1F1 is required for Tshb transcription in thyrotropes of the adenohypophysis, and it acts synergistically with GATA2 to drive cell fate. The molecular mechanisms driving Tshb expression independently of Pou1f1 in PT thyrotropes are unclear. Thyrotropes are the least abundant endocrine cell-type in the pituitary gland. We used genetic labeling and fluorescence-activated cell sorting (FACS) to enrich for thyrotropes for single-cell sequencing. We performed scRNAseq on 7-day-old GFP-positive pituitary cells from Tshb-Cre; R26-LSL-eYFP and intact whole pituitaries, recovering more than 15,000 cells altogether. We observe two distinct populations of cells expressing Tshb. The larger thyrotrope population has approximately twenty fold higher levels of Tshb and five fold higher Cga transcripts than the smaller population, and they are also distinguished by expression of Pou1f1, TSH-releasing hormone receptor (Trhr), and deiodinase 2 (Dio2), consistent with expectations for AP thyrotropes. The smaller thyrotrope population does not express Pou1f1, but those cells are characterized by expression of TSH receptor (Tshr) and melatonin receptor 1A (Mtnr1a), consistent with expectations for PT thyrotropes. They express mildly increased levels of Eya3 and Six1, although these genes are expressed in other cell-types including AP thyrotropes, stem cells, and gonadotropes. They have two-fold higher levels of Gata2 transcripts and uniquely express the transcription factor Sox14. SOX14 is a SoxB2 family transcription factor that counteracts the transcriptional activity of SoxB1 family members, such as Sox2. In conclusion, our scRNAseq has identified novel markers of PT thyrotropes and unveils novel insights into the similarities and differences in the development and function of pituitary thyrotrope subpopulations.


2021 ◽  
Vol 17 (1) ◽  
pp. 189-195
Author(s):  
Sibel Ertek

Thyrotropin (TSH) is classically known to be regulated by negative feedback from thyroid hormones and stimulated by thyrotropin-releasing hormone (TRH) from the hypothalamus. At the end of the 1990s, studies showed that thyrotroph cells from the pars tuberalis (PT) did not have TRH receptors and their TSH regulation was independent from TRH stimulation. Instead, PT-thyrotroph cells were shown to have melatonin-1 (MT-1) receptors and melatonin secretion from the pineal gland stimulates TSH- subunit formation in PT. Electron microscopy examinations also revealed some important differences between PT and pars distalis (PD) thyrotrophs. PT-TSH also have low bioactivity in the peripheral circulation. Studies showed that they have different glycosylations and PT-TSH forms macro-TSH complexes in the periphery and has a longer half-life. Photoperiodism affects LH levels in animals via decreased melatonin causing increased TSH- subunit expression and induction of deiodinase-2 (DIO-2) in the brain. Mammals need a light stimulus carried into the suprachiasmatic nucleus (which is a circadian clock) and then transferred to the pineal gland to synthesize melatonin, but birds have deep brain receptors and they are stimulated directly by light stimuli to have increased PT-TSH, without the need for melatonin. Photoperiodic regulations via TSH and DIO 2/3 also have a role in appetite, seasonal immune regulation, food intake and nest-making behaviour in animals. Since humans have no clear seasonal breeding period, such studies as recent ‘’domestication locus’’ studies in poultry are interesting. PT-TSH that works like a neurotransmitter in the brain may become an important target for future studies about humans.


1982 ◽  
Vol 92 (2) ◽  
pp. 261-265 ◽  
Author(s):  
O. F. X. ALMEIDA

Adult male Japanese quail held under short daily photoperiods (8 h light: 16 h darkness; 8L : 16D) had significantly higher plasma concentrations of thyroid-stimulating hormone (TSH), tri-iodothyronine (T3) and thyroxine (T4) than did those kept under long days (16L : 8D). When given a single s.c. injection of 50 μg thyrotrophin releasing hormone (TRH) the birds held under both the 8L : 16D and 16L : 8D photoperiods showed rapid increases in their blood concentrations of TSH, T4 and T3, the amplitude of the TSH response of the birds exposed to 16L : 8D being particularly marked. These results suggest that, in the male quail, long daily photoperiods produce a hypothyroid state as a result of diminished TRH secretion. The synthetic and secretory capacities of the thyroid gland and pituitary thyrotrophs are apparently unimpaired by long days.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222106
Author(s):  
Yusuke Nakane ◽  
Ai Shinomiya ◽  
Wataru Ota ◽  
Keisuke Ikegami ◽  
Tsuyoshi Shimmura ◽  
...  

2000 ◽  
Vol 19 (2) ◽  
pp. 9-17 ◽  
Author(s):  
Angela Dorton

The pituitary gland, the “master gland” of the body, is composed of endocrine cells, which secrete hormones essential for homeostasis. The gland consists of the adenohypophysis (anterior pituitary) and the neurohypophysis (posterior pituitary), two unique structures that differ anatomically and functionally.The neurohypophysis is innervated by nerve cells in the hypothalamus and forms the connection between it and the pituitary gland. The hypothalamus stimulates release and inhibition of pituitary hormones. The neurohypophysis secretes oxytocin and antidiuretic hormone.The adenohypophysis is composed of three structures: the pars distalis, the pars intermedia, and the pars tuberalis. The anterior pituitary (pars distalis) is responsible for the release of hormones that include growth hormone, prolactin, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, adrenocorticotropic hormone, and melanocyte-stimulating hormone.Disorders of the pituitary are predominately those of insufficient hormone release and may have profound effects on the neonate. The potential causes of and clinical symptomatology that may accompany pituitary hormone insufficiency in the neonatal period are explored.


Sign in / Sign up

Export Citation Format

Share Document