scholarly journals OR16-05 Single-Cell Sequencing Identifies Novel Regulators of Thyrotrope Populations and POU1F1-Independent Thyroid-Stimulating Hormone Expression

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Leonard Cheung ◽  
Alexandre Daly ◽  
Michelle Brinkmeier ◽  
Sally Ann Camper

Abstract We implemented single-cell RNA sequencing (scRNAseq) technology as a discovery tool to identify factors enriched in differentiated thyrotropes. Thyroid-stimulating hormone (TSH) is produced in the pars distalis of the anterior pituitary (AP) and primarily acts on the thyroid gland to regulate metabolism through T3/T4. However, TSH is also produced by cells in the pars tuberalis (PT), which is comprised of a thin layer of cells that extends rostrally from the pars distalis along the pituitary stalk to the median eminence in the hypothalamus. TSH produced by PT thyrotropes acts on hypothalamic tanycytes to regulate seasonal reproduction. PT thyrotropes likely descend from rostral tip thyrotropes that arise at e12.5 of mouse development, which transcribe the TSH beta subunit (Tshb) without detectable expression of the transcription factor POU1F1. POU1F1 is required for Tshb transcription in thyrotropes of the adenohypophysis, and it acts synergistically with GATA2 to drive cell fate. The molecular mechanisms driving Tshb expression independently of Pou1f1 in PT thyrotropes are unclear. Thyrotropes are the least abundant endocrine cell-type in the pituitary gland. We used genetic labeling and fluorescence-activated cell sorting (FACS) to enrich for thyrotropes for single-cell sequencing. We performed scRNAseq on 7-day-old GFP-positive pituitary cells from Tshb-Cre; R26-LSL-eYFP and intact whole pituitaries, recovering more than 15,000 cells altogether. We observe two distinct populations of cells expressing Tshb. The larger thyrotrope population has approximately twenty fold higher levels of Tshb and five fold higher Cga transcripts than the smaller population, and they are also distinguished by expression of Pou1f1, TSH-releasing hormone receptor (Trhr), and deiodinase 2 (Dio2), consistent with expectations for AP thyrotropes. The smaller thyrotrope population does not express Pou1f1, but those cells are characterized by expression of TSH receptor (Tshr) and melatonin receptor 1A (Mtnr1a), consistent with expectations for PT thyrotropes. They express mildly increased levels of Eya3 and Six1, although these genes are expressed in other cell-types including AP thyrotropes, stem cells, and gonadotropes. They have two-fold higher levels of Gata2 transcripts and uniquely express the transcription factor Sox14. SOX14 is a SoxB2 family transcription factor that counteracts the transcriptional activity of SoxB1 family members, such as Sox2. In conclusion, our scRNAseq has identified novel markers of PT thyrotropes and unveils novel insights into the similarities and differences in the development and function of pituitary thyrotrope subpopulations.

2021 ◽  
Vol 17 (1) ◽  
pp. 189-195
Author(s):  
Sibel Ertek

Thyrotropin (TSH) is classically known to be regulated by negative feedback from thyroid hormones and stimulated by thyrotropin-releasing hormone (TRH) from the hypothalamus. At the end of the 1990s, studies showed that thyrotroph cells from the pars tuberalis (PT) did not have TRH receptors and their TSH regulation was independent from TRH stimulation. Instead, PT-thyrotroph cells were shown to have melatonin-1 (MT-1) receptors and melatonin secretion from the pineal gland stimulates TSH- subunit formation in PT. Electron microscopy examinations also revealed some important differences between PT and pars distalis (PD) thyrotrophs. PT-TSH also have low bioactivity in the peripheral circulation. Studies showed that they have different glycosylations and PT-TSH forms macro-TSH complexes in the periphery and has a longer half-life. Photoperiodism affects LH levels in animals via decreased melatonin causing increased TSH- subunit expression and induction of deiodinase-2 (DIO-2) in the brain. Mammals need a light stimulus carried into the suprachiasmatic nucleus (which is a circadian clock) and then transferred to the pineal gland to synthesize melatonin, but birds have deep brain receptors and they are stimulated directly by light stimuli to have increased PT-TSH, without the need for melatonin. Photoperiodic regulations via TSH and DIO 2/3 also have a role in appetite, seasonal immune regulation, food intake and nest-making behaviour in animals. Since humans have no clear seasonal breeding period, such studies as recent ‘’domestication locus’’ studies in poultry are interesting. PT-TSH that works like a neurotransmitter in the brain may become an important target for future studies about humans.


2000 ◽  
Vol 19 (2) ◽  
pp. 9-17 ◽  
Author(s):  
Angela Dorton

The pituitary gland, the “master gland” of the body, is composed of endocrine cells, which secrete hormones essential for homeostasis. The gland consists of the adenohypophysis (anterior pituitary) and the neurohypophysis (posterior pituitary), two unique structures that differ anatomically and functionally.The neurohypophysis is innervated by nerve cells in the hypothalamus and forms the connection between it and the pituitary gland. The hypothalamus stimulates release and inhibition of pituitary hormones. The neurohypophysis secretes oxytocin and antidiuretic hormone.The adenohypophysis is composed of three structures: the pars distalis, the pars intermedia, and the pars tuberalis. The anterior pituitary (pars distalis) is responsible for the release of hormones that include growth hormone, prolactin, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, adrenocorticotropic hormone, and melanocyte-stimulating hormone.Disorders of the pituitary are predominately those of insufficient hormone release and may have profound effects on the neonate. The potential causes of and clinical symptomatology that may accompany pituitary hormone insufficiency in the neonatal period are explored.


Author(s):  
Tongbin Wu ◽  
Zhengyu Liang ◽  
Zengming Zhang ◽  
Canzhao Liu ◽  
Lunfeng Zhang ◽  
...  

Background: Left ventricular noncompaction cardiomyopathy (LVNC) was discovered half a century ago as a cardiomyopathy with excessive trabeculation and a thin ventricular wall. In the decades since, numerous studies have demonstrated that LVNC primarily impacts left ventricles (LVs), and is often associated with LV dilation and dysfunction. However, owing in part to the lack of suitable mouse models that faithfully mirror the selective LV vulnerability in patients, mechanisms underlying susceptibility of LV to dilation and dysfunction in LVNC remain unknown. Genetic studies have revealed that deletions and mutations in PRDM16 cause LVNC, but previous conditional Prdm16 knockout mouse models do not mirror the LVNC phenotype in patients, and importantly, the underlying molecular mechanisms by which PRDM16 deficiency causes LVNC are still unclear. Methods: Prdm16 cardiomyocyte (CM)-specific knockout ( Prdm16 cKO ) mice were generated and analyzed for cardiac phenotypes. RNA sequencing and ChIP sequencing were performed to identify direct transcriptional targets of PRDM16 in CMs. Single cell RNA sequencing in combination with Spatial Transcriptomics were employed to determine CM identity at single cell level. Results: CM-specific ablation of Prdm16 in mice caused LV-specific dilation and dysfunction, as well as biventricular noncompaction, which fully recapitulated LVNC in patients. Mechanistically, PRDM16 functioned as a compact myocardium-enriched transcription factor, which activated compact myocardial genes while repressing trabecular myocardial genes in LV compact myocardium. Consequently, Prdm16 cKO LV compact myocardial CMs shifted from their normal transcriptomic identity to a transcriptional signature resembling trabecular myocardial CMs and/or neurons. Chamber-specific transcriptional regulation by PRDM16 was in part due to its cooperation with LV-enriched transcription factors Tbx5 and Hand1. Conclusions: These results demonstrate that disruption of proper specification of compact CM may play a key role in the pathogenesis of LVNC. They also shed light on underlying mechanisms of LV-restricted transcriptional program governing LV chamber growth and maturation, providing a tangible explanation for the susceptibility of LV in a subset of LVNC cardiomyopathies.


1993 ◽  
Vol 41 (7) ◽  
pp. 955-960 ◽  
Author(s):  
B L Lee ◽  
G Unabia ◽  
G Childs

We previously found follistatin (FS) mRNA in gonadotropes [predominantly in cells with luteinizing hormone (LH) antigens] and folliculostellate cells (with S100 antigens) in diestrus rats pituitaries. However, earlier in the cycle, when percentages of gonadotropes are lowest, percentages of cells expressing FS are 1.5-2-fold higher than in diestrus. This study was designed to detect FS mRNA and other pituitary antigens to identify the additional cells with dual in situ hybridization and immunolabeling protocols. The mRNA was detected with biotinylated complementary oligonucleotide probes and avidin-biotin-peroxidase complexes. Significant labeling for FS mRNA was found in cells with the following antigens: growth hormone (GH) (7% of pituitary cells); prolactin (PRL) (5%); S100 protein (5%); follicle-stimulating hormone (FSH beta) (4%); LH beta (3%); and thyroid-stimulating hormone (TSH beta) (3%). Optimal conditions for detection included: overnight plating of > 50,000 cells/well (24-well tray) in media containing 10% fetal bovine serum; hybridization at 37 degrees C; and fixation in 2% glutaraldehyde. Whereas FS is expressed predominantly by LH gonadotropes at midcycle, FS mRNA can be expressed by all types of antigen-bearing cells earlier in the cycle. Its function in the pituitary may relate to its role in binding activin, which would result in inhibition of FSH release. However, since activin inhibits secretion of GH, PRL, and adrenocorticotropin (ACTH), FS may also control activin's effects on these cells. The FS-expressing cells may therefore be paracrine or autocrine regulators.


1994 ◽  
Vol 42 (8) ◽  
pp. 1117-1125 ◽  
Author(s):  
M A Japón ◽  
M Rubinstein ◽  
M J Low

We used 35S-labeled oligonucleotides and cRNAs (riboprobes) to detect the temporal order and spatial pattern of anterior pituitary hormone gene expression in (B6CBF1 x B6CBF1)F2 fetal mice from embryonic Day 9.5 (E9.5) to postnatal Day 1 (P1). Pro-opiomelanocortin (POMC) mRNA was expressed in the basal diencephalon on Day E10.5, in the ventromedial zone of the pars distalis on Day E12.5, and in the pars intermedia on Day E14.5. The common alpha-glycoprotein subunit (alpha-GSU) mRNA first appeared in the anterior wall of Rathke's pouch on Day E11.5 and extended to the pars tuberalis and ventromedial zone of the pars distalis on Day E12.5. Thyroid-stimulating hormone-beta (TSH beta) subunit mRNA was expressed initially in both the pas tuberalis and ventromedial pars distalis on Day E14.5, with an identical spatial distribution to alpha-GSU at the time. In contrast, luteinizing hormone-beta (LH beta) subunit and follicle-stimulating hormone beta (FSH beta) subunit mRNAs were detected initially only in the ventromedial pars distalis on Days E16.5 and E17.5, respectively, in an identical distribution to each other. POMC-, alpha-GSU-, TSH beta, LH beta-, and FSH beta-positive cells within the pars distalis all increased in number and autoradiographic signal with differing degrees of spatial expansion posteriorly, laterally, and dorsally up to Day P1. POMC expression was typically the most intense and extended circumferentially to include the entire lateral and dorsal surfaces of the pars distalis. The expression of both growth hormone (GH) and prolactin (PRL) started coincidentally on Day E15.5. However PRL cells localized in the ventromedial area similarly to POMC and the glycoprotein hormone subunits, whereas GH cells were found initially in a more lateral and central distribution within the lobes of the pars distalis. Somatotrophs increased dramatically in number and autoradiographic signal, extending throughout the pars distalis except for the most peripheral layer of cells on Day E17.5. Mammotrophs also increased in number but less abundantly than somatotrophs, and PRL expression remained more confined to central-medial and ventrolateral areas of the pars distalis up to Day P1. These data demonstrate distinctive patterns of expression for each of the major anterior pituitary hormone genes during development of the mouse pituitary gland and suggest that different groups of committed cells are the immediate precursors to the terminally differentiated hormone-secreting cell types.


1981 ◽  
Vol 240 (6) ◽  
pp. E602-E608
Author(s):  
L. Lagace ◽  
F. Labrie ◽  
T. Antakly ◽  
G. Pelletier

To determine possible effects of the time in culture on the responsiveness of the different pituitary cell types to estrogens, rat anterior pituitary cells were incubated up to 20 days in the presence or absence of 10 nM 17 beta-estradiol. Whereas spontaneous luteinizing hormone (LH) and thyroid-stimulating hormone (TSH) release decreased by 85-90%, follicle-stimulating hormone (FSH) and prolactin accumulation in medium were only 50% decreased after 20 days in culture, thus suggesting that the secretion of FSH and prolactin is less dependent on extrinsic stimulatory factors. Estradiol increased spontaneous LH release and its responsiveness to luteinizing hormone-releasing hormone (LH-RH) up to day 16 in culture, whereas the stimulatory effect of the estrogen on FSH secretion was significant only up to day 6. The stimulatory effect of estradiol on basal TSH release was seen up to day 8 in culture, whereas that on spontaneous prolactin release increased progressively after day 8 in culture up to the last time interval studied (20 days). As revealed by immunocytochemistry, the stimulatory effect of estradiol was not due to changes of cell growth.


2018 ◽  
Vol 60 (3) ◽  
pp. R131-R155 ◽  
Author(s):  
Nandana Das ◽  
T Rajendra Kumar

Follicle-stimulating hormone (FSH) plays fundamental roles in male and female fertility. FSH is a heterodimeric glycoprotein expressed by gonadotrophs in the anterior pituitary. The hormone-specific FSHβ-subunit is non-covalently associated with the common α-subunit that is also present in the luteinizing hormone (LH), another gonadotrophic hormone secreted by gonadotrophs and thyroid-stimulating hormone (TSH) secreted by thyrotrophs. Several decades of research led to the purification, structural characterization and physiological regulation of FSH in a variety of species including humans. With the advent of molecular tools, availability of immortalized gonadotroph cell lines and genetically modified mouse models, our knowledge on molecular mechanisms of FSH regulation has tremendously expanded. Several key players that regulate FSH synthesis, sorting, secretion and action in gonads and extragonadal tissues have been identified in a physiological setting. Novel post-transcriptional and post-translational regulatory mechanisms have also been identified that provide additional layers of regulation mediating FSH homeostasis. Recombinant human FSH analogs hold promise for a variety of clinical applications, whereas blocking antibodies against FSH may prove efficacious for preventing age-dependent bone loss and adiposity. It is anticipated that several exciting new discoveries uncovering all aspects of FSH biology will soon be forthcoming.


2021 ◽  
Vol 10 (Supplement_1) ◽  
pp. S14-S14
Author(s):  
K E Ocwieja ◽  
T K Hughes ◽  
J M Antonucci ◽  
A L Richards ◽  
A C Stanton ◽  
...  

Abstract Background The molecular mechanisms underpinning the neurologic and congenital pathologies caused by Zika virus (ZIKV) infection remain poorly understood. It is also unclear why congenital ZIKV disease was not observed prior to the recent epidemics in French Polynesia and the Americas, despite evidence that the Zika virus has actively circulated in parts of Africa and Asia since 1947 and 1966, respectively. Methods Due to advances in stem cell-based technologies, we can now model ZIKV infections of the central nervous system in human stem cell-derived neuroprogenitor cells and cerebral organoids, which recapitulate complex three-dimensional neural architecture. We apply Seq-Well—a simple, portable platform for massively parallel single-cell RNA sequencing—to characterize these neural models infected with ZIKV. We detect and quantify host mRNA transcripts and viral RNA with single-cell resolution, thereby defining transcriptional features of both uninfected and infected cells. Results In neuroprogenitor cells, single-cell sequencing reveals that while uninfected bystander cells strongly upregulate interferon pathway genes, these are largely suppressed in cells infected with ZIKV within the same culture dish. In our organoid model, single-cell sequencing allows us to identify multiple cellular populations, including neuroprogenitor cells, intermediate progenitor cells, and terminally differentiated neurons. In this model of the developing brain, we identify preferred tropisms of ZIKV infection. Our data additionally reveal differences in cell-type frequencies and gene expression within organoids infected by historic and contemporary ZIKV strains from a variety of geographic locations. Conclusions These findings may help explain phenotypic differences attributed to the viruses, including variable propensities to cause microcephaly. Overall, our work provides insight into normal and diseased human brain development and suggests that both virus replication and host response mechanisms underlie the neuropathology of ZIKV infection.


Sign in / Sign up

Export Citation Format

Share Document