Kinetics of acetyl-CoA synthetase—II. Product inhibition studies

1979 ◽  
Vol 10 (7) ◽  
pp. 583-588 ◽  
Author(s):  
William W. Farrar ◽  
Kent M. Plowman
1982 ◽  
Vol 205 (2) ◽  
pp. 381-388 ◽  
Author(s):  
Ann K. Daly ◽  
Timothy J. Mantle

The steady-state kinetics of the major form of ox kidney aldehyde reductase with d-glucuronic acid have been determined at pH7. Initial rate and product inhibition studies performed in both directions are consistent with a Di-Iso Ordered Bi Bi mechanism. The mechanism of inhibition by sodium valproate and benzoic acid is shown to involve flux through an alternative pathway.


1989 ◽  
Vol 67 (11-12) ◽  
pp. 763-769 ◽  
Author(s):  
Emidio De Carolis ◽  
Ragai K. Ibrahim

Two phenylpropanoid O-methyltransferase isoforms were purified to homogeneity from young cabbage leaves. They catalyzed the meta-O-methylation of caffeic and 5-hydroxyferulic acids to ferulic and sinapic acids, respectively. Both isoforms I and II exhibited different elution patterns from a Mono Q column, distinct apparent pIs on chromatofocusing, different product ratios, and stability on adenosine–agarose affinity column. On the other hand, both isoforms had similar apparent molecular masses (42 kilodaltons) and a pH optimum of 7.6. They exhibited no requirement for divalent cations and were both irreversibly inhibited by iodoacetate. Substrate interaction kinetics of the more stable isoform I, using the 5-hydroxyferulic acid and S-adenosyl-L-methionine, gave converging lines. Product inhibition studies showed competitive inhibition between S-adenosyl-L-methionine and S-adenosyl-L-homocysteine and non-competitive inhibition between the phenylpropanoid substrate and its methylated product. The kinetic patterns are consistent with an ordered bi bi mechanism, where S-adenosyl-L-methionine is the first substrate to bind and S-adenosyl-L-homocysteine is the last product released.Key words: phenylpropanoid O-methyltransferase, purification, isoforms, adenosine–agarose affinity chromatography, kinectic mechanism.


1978 ◽  
Vol 30 (6) ◽  
pp. 1629-1631 ◽  
Author(s):  
A. Bayoan ◽  
L. D. Possani ◽  
G. Rode ◽  
R. Tapia

1987 ◽  
Vol 244 (1) ◽  
pp. 165-171 ◽  
Author(s):  
K M Bohren ◽  
J P von Wartburg ◽  
B Wermuth

Initial-rate analysis of the carbonyl reductase-catalysed reduction of menadione by NADPH gave families of straight lines in double-reciprocal plots consistent with a sequential mechanism being obeyed. The fluorescence of NADPH was increased up to 7-fold with a concomitant shift of the emission maximum towards lower wavelength in the presence of carbonyl reductase, and both NADPH and NADP+ caused quenching of the enzyme fluorescence, indicating formation of a binary enzyme-coenzyme complex. Deuterium isotope effects on the apparent V/Km values decreased with increasing concentrations of menadione but were independent of the NADPH concentration. The results, together with data from product inhibition studies, are consistent with carbonyl reductase obeying a compulsory-order mechanism, NADPH binding first and NADP+ leaving last. No significant differences in the kinetic properties of three molecular forms of carbonyl reductase were detectable.


1975 ◽  
Vol 6 (8) ◽  
pp. 537-542 ◽  
Author(s):  
William W. Farrar ◽  
Kent M. Plowman
Keyword(s):  

1974 ◽  
Vol 141 (3) ◽  
pp. 817-824 ◽  
Author(s):  
Keith R. F. Elliott ◽  
Keith F. Tipton

A study of the product-inhibition patterns of carbamoyl phosphate synthetase from bovine liver is reported. Inhibition by adenosine, AMP and inorganic ions is also reported. The results are in agreement with the previously proposed model in which the order of substrate binding is ATPMg, followed by HCO3−, ATPMg and NH4+. The order of product release on the basis of the reported results is carbamoyl phosphate, followed by ADPMg, ADPMg and inorganic phosphate.


1996 ◽  
Vol 318 (3) ◽  
pp. 997-1006 ◽  
Author(s):  
Derek HERBERT ◽  
Lindsey J PRICE ◽  
Claude ALBAN ◽  
Laure DEHAYE ◽  
Dominique JOB ◽  
...  

The steady-state kinetics of two multifunctional isoforms of acetyl-CoA carboxylase (ACCase) from maize leaves (a major isoform, ACCase1 and a minor isoform, ACCase2) have been investigated with respect to reaction mechanism, inhibition by two graminicides of the aryloxyphenoxypropionate class (quizalofop and fluazifop) and some cellular metabolites. Substrate interaction and product inhibition patterns indicated that ADP and Pi products from the first partial reaction were not released before acetyl-CoA bound to the enzymes. Product inhibition patterns did not match exactly those predicted for an ordered Ter Ter or a random Ter Ter mechanism, but were close to those postulated for an ordered mechanism. ACCase2 was about 1/2000 as sensitive as ACCase1 to quizalofop but only about 1/150 as sensitive to fluazifop. Fitting inhibition data to the Hill equation indicated that binding of quizalofop or fluazifop to ACCase1 was non-cooperative, as shown by the Hill constant (napp) values of 0.86 and 1.16 for quizalofop and fluazifop respectively. Apparent inhibition constant values (K´ from the Hill equation) for ACCase1 were 0.054 µM for quizalofop and 21.8 µM for fluazifop. On the other hand, binding of quizalofop or fluazifop to ACCase2 exhibited positive co-operativity, as shown by the napp values of 1.85 and 1.59 for quizalofop and fluazifop respectively. K´ values for ACCase2 were 1.7 mM for quizalofop and 140 mM for fluazifop. Kinetic parameters for the co-operative binding of quizalofop to maize ACCase2 were close to those of another multifunctional ACCase of limited sensitivity to graminicide, ACC220 from pea. Inhibition of ACCase1 by quizalofop was mixed-type with respect to acetyl-CoA or ATP, but the concentration of acetyl-CoA had the greater effect on the level of inhibition. Neither ACCase1 nor ACCase2 was appreciably sensitive to CoA esters of palmitic acid (16:0) or oleic acid (18:1). Approximate IC50 values were 10 µM (ACCase2) and 50 µM (ACCase1) for both CoA esters. Citrate concentrations up to 1 mM had no effect on ACCase1 activity. Above this concentration, citrate was inhibitory. ACCase2 activity was slightly stimulated by citrate over a broad concentration range (0.25–10 mM). The significance of possible effects of acyl-CoAs or citrate in vivo is discussed.


Sign in / Sign up

Export Citation Format

Share Document