Towards a new theory of cold rolling thin foil

1987 ◽  
Vol 29 (7) ◽  
pp. 507-524 ◽  
Author(s):  
N.A. Fleck ◽  
K.L. Johnson
Keyword(s):  
Author(s):  
Kai F. Karhausen ◽  
Antti S. Korhonen

Because of its lightweight and strength, aluminum alloys are used are being used increasing for the production of lightweight construction. In addition to applications in the expanding transportation market, aluminum sheet and foil materials are traditionally used for food and medical packaging, thin foil, and fin stock for air conditioners and heat exchangers, decorative panels and lithographic sheet. Rolling is a process used for the production of strip or sheet. In this article, rolling processing of aluminum and aluminum alloys is discussed in detail and specific processes include: hot-rolling, cold-rolling, and rolling of aluminum foils.


2000 ◽  
Vol 646 ◽  
Author(s):  
Toshiyuki Hirano ◽  
Masahiko Demura ◽  
Kyosuke Kishida ◽  
Yozo Suga

ABSTRACTThin foils of stoichiometric Ni3Al below 100 μm in thickness were successfully fabricated by cold rolling of the sheets which were sectioned from directionally solidified ingots. Maximum rolling reduction in thickness amounted to 96%, irrespective of the initial orientation or the existence of columnar grains in the starting sheets. The as-rolled foils were characterized in terms of microstructures, textures and dislocation structures. The deformation microstructures were of a dual banded structure composed of two different {110} textures in the case of <001> rolling direction, while a rather homogeneous structure with a single {110} texture resulted in the case of <112> rolling direction. TEM observation revealed homogenous dislocation structures in either case without cell formation, accompanied by very fine grained-regions at higher reduction.


2001 ◽  
Vol 9 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Masahiko Demura ◽  
Yozo Suga ◽  
Osamu Umezawa ◽  
Kyosuke Kishida ◽  
E.P George ◽  
...  
Keyword(s):  

2014 ◽  
Vol 6 ◽  
pp. 312382 ◽  
Author(s):  
Sang-Ho Lee ◽  
Kyung-Hun Lee ◽  
Dae-Cheol Ko ◽  
Seon-Bong Lee ◽  
Byung-Min Kim

2004 ◽  
Vol 233-234 ◽  
pp. 37-48 ◽  
Author(s):  
Kyosuke Kishida ◽  
Masahiko Demura ◽  
Satoru Kobayashi ◽  
Ya Xu ◽  
Toshiyuki Hirano

We have studied the texture and microstructure evolution during cold rolling of Ni3Al single crystals as a function of the initial crystal orientations and revealed that the cold rolling behavior of the single crystals are strongly dependent on the initial crystal orientations, especially on the initial rolling direction (RD). An optimum condition for thin foil fabrication is determined that the initial RD is close to <001>. According to the conditions we have successfully fabricated the wide and thin foils of binary Ni3Al by cold rolling the single crystalline ingots. The thinnest foils obtained so far are about 20µm in thickness and 50mm in width. This document reviews the current status of our research on the thin foils of intermetallic compound Ni3Al.


Author(s):  
T. Mukai ◽  
T. E. Mitchell

Radiation-induced homogeneous precipitation in Ni-Be alloys was recently observed by high voltage electron microscopy. A coupling of interstitial flux with solute Be atoms is responsible for the precipitation. The present investigation further shows that precipitation is also induced at thin foil surfaces by electron irradiation under a high vacuum.


Author(s):  
F. I. Grace ◽  
L. E. Murr

During the course of electron transmission investigations of the deformation structures associated with shock-loaded thin foil specimens of 70/30 brass, it was observed that in a number of instances preferential etching occurred along grain boundaries; and that the degree of etching appeared to depend upon the various experimental conditions prevailing during electropolishing. These included the electrolyte composition, the average current density, and the temperature in the vicinity of the specimen. In the specific case of 70/30 brass shock-loaded at pressures in the range 200-400 kilobars, the predominant mode of deformation was observed to be twin-type faults which in several cases exhibited preferential etching similar to that observed along grain boundaries. A novel feature of this particular phenomenon was that in certain cases, especially for twins located in the vicinity of the specimen edge, the etching or preferential electropolishing literally isolated these structures from the matrix.


Author(s):  
E. A. Kenik ◽  
J. Bentley

Cliff and Lorimer (1) have proposed a simple approach to thin foil x-ray analy sis based on the ratio of x-ray peak intensities. However, there are several experimental pitfalls which must be recognized in obtaining the desired x-ray intensities. Undesirable x-ray induced fluorescence of the specimen can result from various mechanisms and leads to x-ray intensities not characteristic of electron excitation and further results in incorrect intensity ratios.In measuring the x-ray intensity ratio for NiAl as a function of foil thickness, Zaluzec and Fraser (2) found the ratio was not constant for thicknesses where absorption could be neglected. They demonstrated that this effect originated from x-ray induced fluorescence by blocking the beam with lead foil. The primary x-rays arise in the illumination system and result in varying intensity ratios and a finite x-ray spectrum even when the specimen is not intercepting the electron beam, an ‘in-hole’ spectrum. We have developed a second technique for detecting x-ray induced fluorescence based on the magnitude of the ‘in-hole’ spectrum with different filament emission currents and condenser apertures.


Author(s):  
N. J. Zaluzec

The ultimate sensitivity of microchemical analysis using x-ray emission rests in selecting those experimental conditions which will maximize the measured peak-to-background (P/B) ratio. This paper presents the results of calculations aimed at determining the influence of incident beam energy, detector/specimen geometry and specimen composition on the P/B ratio for ideally thin samples (i.e., the effects of scattering and absorption are considered negligible). As such it is assumed that the complications resulting from system peaks, bremsstrahlung fluorescence, electron tails and specimen contamination have been eliminated and that one needs only to consider the physics of the generation/emission process.The number of characteristic x-ray photons (Ip) emitted from a thin foil of thickness dt into the solid angle dΩ is given by the well-known equation


Sign in / Sign up

Export Citation Format

Share Document