A method of integrating the equations of motion of non-holonomic systems with higher-order constraints

1991 ◽  
Vol 55 (4) ◽  
pp. 555-559 ◽  
Author(s):  
Mei Fengxiang
2014 ◽  
Vol 11 (04) ◽  
pp. 1450034 ◽  
Author(s):  
Leonardo Colombo ◽  
Pedro Daniel Prieto-Martínez

In this paper, we consider an intrinsic point of view to describe the equations of motion for higher-order variational problems with constraints on higher-order trivial principal bundles. Our techniques are an adaptation of the classical Skinner–Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics. As an interesting application we deduce the equations of motion for optimal control of underactuated mechanical systems defined on principal bundles.


2021 ◽  
Vol 502 (3) ◽  
pp. 3976-3992
Author(s):  
Mónica Hernández-Sánchez ◽  
Francisco-Shu Kitaura ◽  
Metin Ata ◽  
Claudio Dalla Vecchia

ABSTRACT We investigate higher order symplectic integration strategies within Bayesian cosmic density field reconstruction methods. In particular, we study the fourth-order discretization of Hamiltonian equations of motion (EoM). This is achieved by recursively applying the basic second-order leap-frog scheme (considering the single evaluation of the EoM) in a combination of even numbers of forward time integration steps with a single intermediate backward step. This largely reduces the number of evaluations and random gradient computations, as required in the usual second-order case for high-dimensional cases. We restrict this study to the lognormal-Poisson model, applied to a full volume halo catalogue in real space on a cubical mesh of 1250 h−1 Mpc side and 2563 cells. Hence, we neglect selection effects, redshift space distortions, and displacements. We note that those observational and cosmic evolution effects can be accounted for in subsequent Gibbs-sampling steps within the COSMIC BIRTH algorithm. We find that going from the usual second to fourth order in the leap-frog scheme shortens the burn-in phase by a factor of at least ∼30. This implies that 75–90 independent samples are obtained while the fastest second-order method converges. After convergence, the correlation lengths indicate an improvement factor of about 3.0 fewer gradient computations for meshes of 2563 cells. In the considered cosmological scenario, the traditional leap-frog scheme turns out to outperform higher order integration schemes only when considering lower dimensional problems, e.g. meshes with 643 cells. This gain in computational efficiency can help to go towards a full Bayesian analysis of the cosmological large-scale structure for upcoming galaxy surveys.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
R. D. Firouz-Abadi ◽  
M. Rahmanian ◽  
M. Amabili

The present study considers the free vibration analysis of moderately thick conical shells based on the Novozhilov theory. The higher order governing equations of motion and the associate boundary conditions are obtained for the first time. Using the Frobenius method, exact base solutions are obtained in the form of power series via general recursive relations which can be applied for any arbitrary boundary conditions. The obtained results are compared with the literature and very good agreement (up to 4%) is achieved. A comprehensive parametric study is performed to provide an insight into the variation of the natural frequencies with respect to thickness, semivertex angle, circumferential wave numbers for clamped (C), and simply supported (SS) boundary conditions.


2015 ◽  
Vol 70 (6) ◽  
pp. 1167-1169 ◽  
Author(s):  
A V Borisov ◽  
I S Mamaev

Author(s):  
S. Chandraker ◽  
H. Roy ◽  
G. Maurya

This paper involves the development of mathematical model of multilayered viscoelastic rotor using beam finite element and at the same time studying their modal analysis. The operator based constitutive relationship is used to obtain the equations of motion. The FE formulation contents higher order system where the number of order increases with the number of layers exists in the rotor shaft. Under these conditions, the complex modal behaviour of the rotor-shaft is studied to get an insight of the dynamic characteristics of the system, in terms of Modal Damping Factors, Stability Limit of Spin-speed (SLS), the directional Frequency Response Function (dFRF) as well as the direction of whirl of the shaft in different modes. Many researchers adopted this methodology for obtaining the dynamic behaviour of a second order system. This work is started by motivation of the absentia of work for higher order system.


Author(s):  
Andrea Arena ◽  
Walter Lacarbonara ◽  
Matthew P Cartmell

Nonlinear dynamic interactions in harbour quayside cranes due to a two-to-one internal resonance between the lowest bending mode of the deformable boom and the in-plane pendular mode of the container are investigated. To this end, a three-dimensional model of container cranes accounting for the elastic interaction between the crane boom and the container dynamics is proposed. The container is modelled as a three-dimensional rigid body elastically suspended through hoisting cables from the trolley moving along the crane boom modelled as an Euler-Bernoulli beam. The reduced governing equations of motion are obtained through the Euler-Lagrange equations employing the boom kinetic and stored energies, derived via a Galerkin discretisation based on the mode shapes of the two-span crane boom used as trial functions, and the kinetic and stored energies of the rigid body container and the elastic hoisting cables. First, conditions for the onset of internal resonances between the boom and the container are found. A higher order perturbation treatment of the Taylor expanded equations of motion in the neighbourhood of a two-to-one internal resonance between the lowest boom bending mode and the lowest pendular mode of the container is carried out. Continuation of the fixed points of the modulation equations together with stability analysis yields a rich bifurcation behaviour, which features Hopf bifurcations. It is shown that consideration of higher order terms (cubic nonlinearities) beyond the quadratic geometric and inertia nonlinearities breaks the symmetry of the bifurcation equations, shifts the bifurcation points and the stability ranges, and leads to bifurcations not predicted by the low order analysis.


2015 ◽  
Vol 23 (19) ◽  
pp. 3057-3070 ◽  
Author(s):  
Ali Ghorbanpour Arani ◽  
Z Khoddami Maraghi ◽  
H Khani Arani

For the first time in this research, a feedback control system is used to study the free vibration response of rectangular plate made of magnetostrictive material. In this regard, magnetostrictive plate (MsP) is analyzed by trigonometric higher order shear deformation theory that involved six unknown displacement functions and does not require shear correction factor. The MsP is supported by elastic medium as Pasternak foundation which considers both normal and shears modules. Also the MsP undergoes in-plane forces in x and y directions. Considering simply supported boundary condition, six equations of motion are derived using Hamilton’s principle and solved by differential quadrature method. Results indicate the effect of aspect ratio, thickness ratio, elastic medium, compression and tension loads on vibration behavior of MsP. Also, findings show the controller effect of velocity feedback gain to minimize the frequency as far as other parameters become ineffective. These findings can be used to active noise and vibration cancellation systems in many structures.


2006 ◽  
Vol 20 (16) ◽  
pp. 2265-2281 ◽  
Author(s):  
DILIP KUMAR GIRI ◽  
P. S. GUPTA

Squeezing of the electromagnetic field is a purely quantum mechanical phenomenon and this quantum effect is expected to manifest itself in optical processes in which the nonlinear response of the system to the radiation field plays an important role. It has generated a great deal of interest in view of the possibility of reducing the noise of an optical signal below the vacuum limit i.e. zero-point oscillations. In this paper the concept of nth-order amplitude squeezing is introduced in the fundamental mode in four- and six-wave mixing processes as a generalization of the higher-order squeezing under short-time approximation based on a fully quantum mechanical approach. It established the coupled Heisenberg equations of motion involving real and imaginary parts of the quadrature operators. The condition for occurrence of nth-order squeezing is obtained from which higher-order squeezing upto n=3 are studied. Dependence of squeezing on photon number is also established. The conditions for obtaining maximum and minimum squeezing are obtained. The method of present investigation can be applied to any higher-order non-linear optical processes and the technique can also be extended for studying squeezing in any N-photon process in general. Further, nth-order squeezing of radiation in N-photon process can also be investigated. The results obtained may help in selecting a suitable process to generate optimum squeezing in the radiation field.


Sign in / Sign up

Export Citation Format

Share Document