Preparative regime for the purification of bitter acids derived from hops (Humulus lupulus L.)

1996 ◽  
Vol 731 (1-2) ◽  
pp. 327-330 ◽  
Author(s):  
Paul S. Hughes
2016 ◽  
Vol 92 (3) ◽  
pp. 263-277 ◽  
Author(s):  
Jaroslav Matoušek ◽  
Tomáš Kocábek ◽  
Josef Patzak ◽  
Jindřich Bříza ◽  
Kristýna Siglová ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
pp. 233 ◽  
Author(s):  
Ajay Kumar Mishra ◽  
Tomáš Kocábek ◽  
Vishnu Sukumari Nath ◽  
Praveen Awasthi ◽  
Ankita Shrestha ◽  
...  

The hop plant (Humulus lupulus L.) produces several valuable secondary metabolites, such as prenylflavonoid, bitter acids, and essential oils. These compounds are biosynthesized in glandular trichomes (lupulin glands) endowed with pharmacological properties and widely implicated in the beer brewing industry. The present study is an attempt to generate exhaustive information of transcriptome dynamics and gene regulatory mechanisms involved in biosynthesis and regulation of these compounds, developmental changes including trichome development at three development stages, namely leaf, bract, and mature lupulin glands. Using high-throughput RNA-Seq technology, a total of 61.13, 50.01, and 20.18 Mb clean reads in the leaf, bract, and lupulin gland libraries, respectively, were obtained and assembled into 43,550 unigenes. The putative functions were assigned to 30,996 transcripts (71.17%) based on basic local alignment search tool similarity searches against public sequence databases, including GO, KEGG, NR, and COG families, which indicated that genes are principally involved in fundamental cellular and molecular functions, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in leaf, bract, and lupulin glands tissues of hop. The expression profile of transcript encoding enzymes of BCAA metabolism, MEP, and shikimate pathway was most up-regulated in lupulin glands compared with leaves and bracts. Similarly, the expression levels of the transcription factors and structural genes that directly encode enzymes involved in xanthohumol, bitter acids, and terpenoids biosynthesis pathway were found to be significantly enhanced in lupulin glands, suggesting that production of these metabolites increases after the leaf development. In addition, numerous genes involved in primary metabolism, lipid metabolism, photosynthesis, generation of precursor metabolites/energy, protein modification, transporter activity, and cell wall component biogenesis were differentially regulated in three developmental stages, suggesting their involvement in the dynamics of the lupulin gland development. The identification of differentially regulated trichome-related genes provided a new foundation for molecular research on trichome development and differentiation in hop. In conclusion, the reported results provide directions for future functional genomics studies for genetic engineering or molecular breeding for augmentation of secondary metabolite content in hop.


2013 ◽  
Vol 12 (2) ◽  
pp. 129-140
Author(s):  
Maria Maliarova ◽  
Tibor Maliar ◽  
Jana Girmanova ◽  
Jozef Lehotay ◽  
Jan Kraic

Abstract The Humulus lupulus L. is well known as necessary raw material for beer production. The main structural classes of chemical compounds identified from hop cones include terpenes, bitter acids, prenylated chalcones, and flavonol glycosides. They were subjects of presented work. The content of quercetin was found in the range 490 - 1092 μg/g and that of kaempferol from 218 to 568 μg/g of the dry hop cones. The content of isorhamnetin was very low in all varieties. From biological activities in vitro point of view, relative high level of inhibition activity was observed for six hop genotypes - Zlatan, Lučan, and the Oswald's clones 31, 70, 71, 72, 114 on both enzymes thrombin and urokinase, but without correlation to analyzed flavonols content. In spite of this, antioxidant activity, measured by both the BCLM and HPE methods, was found high and seem to be in correlation with content of analyzed flavonols. Particularly the Oswald's clone 114 expressed very potent biological activities. In general, obtained results indicate that hop cones are valuable material also for other application others than beer production.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 484
Author(s):  
Francesco Rossini ◽  
Giuseppe Virga ◽  
Paolo Loreti ◽  
Nicolò Iacuzzi ◽  
Roberto Ruggeri ◽  
...  

The common hop (Humulus lupulus L.) is a dioecious perennial climbing plant, mainly known for the use of its female inflorescences (cones or, simply, “hops”) in the brewing industry. However, the very first interest towards hops was due to its medicinal properties. Actually, the variety of compounds present in almost all plant parts were (and still are) used to treat or prevent several ailments and metabolic disorders, from insomnia to menopausal symptoms as well as obesity and even cancer. Although hops are predominantly grown for hopping beer, the increasing interest in natural medicine is widening new interesting perspectives for this crop. Moreover, the recent success of the craft beer sector all over the world, made the cultivated hop come out from its traditional growing areas. Particularly, in Europe this resulted in a movement towards southern countries such as Italy, which added itself to the already existing hop industry in Portugal and Spain. In these relatively new environments, a complete knowledge and expertise of hop growing practices is lacking. Overall, while many studies were conducted globally on phytochemistry, bioactivity, and the genetics of hops, results from public research activity on basic hop agronomy are very few and discontinuous as well. The objective of this article is to provide an overview of possible uses, phenology, and agronomic aspects of hops, with specific reference to the difficulties and opportunities this crop is experiencing in the new growing areas, under both conventional and organic farming. The present review aims to fill a void still existing for this topic in the literature and to give directions for farmers that want to face the cultivation of such a challenging crop.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1137
Author(s):  
Katja Bizaj ◽  
Mojca Škerget ◽  
Iztok Jože Košir ◽  
Željko Knez

This work investigates the efficiency of supercritical fluid extraction of hops with a variety of solvents including carbon dioxide (CO2), propane, sulfur hexafluoride (SF6), and dimethyl ether (DME) at various densities (low-density and high-density). Operating parameters were 50 bar, 100 bar and 150 bar and 20 °C, 40 °C, 60 °C and 80 °C for all solvents, respectively. The influence of process parameters on the total yield of extraction and content of bitter acids in the extracts has been investigated. The mathematical model based on Fick’s second law well described the experimental extraction results. Furthermore, HPLC analysis has been used to determine α- and β-acids in extracts. The yield of bitter compounds in hop extracts was largely influenced by the type of solvent, the temperature and pressure applied during extraction. The results show that CO2 and propane were roughly equivalent to DME in solvating power, while SF6 was a poor solvent at the same conditions. The highest yield as well as the highest concentration of bitter acids in extracts were obtained by using DME, where the optimal operating conditions were 40 °C and 100 bar for the extraction of α-acids (max. concentration 9.6%), 60 °C and 50 bar for the extraction of β-acids (4.5%) and 60 °C and 150 bar for the maximum extraction yield (25.6%).


Sign in / Sign up

Export Citation Format

Share Document