Combined effects of crucible rotation and horizontal magnetic field on dopant concentration in a Czochralski melt

1994 ◽  
Vol 142 (1-2) ◽  
pp. 236-244 ◽  
Author(s):  
Hiroyuki Ozoe ◽  
Mitsuo Iwamoto
1972 ◽  
Vol 25 (3) ◽  
pp. 259 ◽  
Author(s):  
PK Bhatia ◽  
JM Steiner

The combined effects of a finite ion Larmor radius and collisions with neutral atoms on the dynamic stability of a composite medium are investigated. The stability analysis has been carried out for a semi-infinite composite medium of variable density in the presence and absence of a uniform streaming motion. Wave propagations transverse to the direction of the uniform horizontal magnetic field have been considered. It is found that the effects of the collisions as well as the finite ion Larmor radius are stabilizing on both streaming and non-streaming composite media.


2021 ◽  
Vol 911 ◽  
Author(s):  
Y. Tasaka ◽  
T. Yanagisawa ◽  
K. Fujita ◽  
T. Miyagoshi ◽  
A. Sakuraba

Abstract


2004 ◽  
Vol 150 (1-2) ◽  
pp. 223-227 ◽  
Author(s):  
Vesna Pešić ◽  
Branka Janać ◽  
Ankica Jelenković ◽  
Vasily Vorobyov ◽  
Zlatko Prolić

1945 ◽  
Vol 18 (1) ◽  
pp. 8-9 ◽  
Author(s):  
Eugénie Cotton-Feytis

Abstract From the standpoint of its magnetic anisotropy, stretched rubber is comparable in a first approximation to a uniaxial crystal, in which the direction of the axis is the same as the direction of elongation. It is possible to measure this anisotropy by means of the oscillation method used by Krishnan, Guha and Banerjee in studying crystals. The sample to be examined is suspended in a uniform horizontal magnetic field in such a manner that its axis is horizontal. It is then so arranged that the torsion of the suspension wire is zero when the rubber sample is in a position of equilibrium in the field. The times of oscillation T′ and T for very small angular displacements around this position, in the presence and then in the absence of the magnetic field, are then recorded. In this way the difference between the specific susceptibilities in the direction of the axis and in the horizontal direction perpendicular to the axis is calculated by application of the equation:


2001 ◽  
Author(s):  
Y. Asako ◽  
E. Gonçalves ◽  
M. Faghri ◽  
M. Charmchi

Abstract Transport processes associated with melting of an electrically conducting Phase Change Material (PCM), placed inside a rectangular enclosure, under low-gravity environment, and in the presence of a magnetic field is simulated numerically. Electromagnetic forces damp the natural convection as well as the flow induced by sedimentation and/or floatation, and thereby simulating the low gravity environment of outer space. Computational experiments are conducted for both side-wall heating and top-wall heating under horizontal magnetic field. The governing equations are discretized using a control-volume-based finite difference scheme. Numerical solutions are obtained for true low-gravity environment as well as for the simulated-low-gravity conditions resulted by the presence of a horizontal magnetic field. The effects of magnetic field on the natural convection, solid phase floatation/sedimentation, liquid-solid interface location, solid melting rate, and flow patterns are investigated. It is found that the melting under low-gravity environment can reasonably be simulated on earth via applying a strong horizontal magnetic field. However, the flow patterns obtained for the true low-gravity cases are not similar to the corresponding cases solved for the simulated-low-gravity environment.


Sign in / Sign up

Export Citation Format

Share Document