scholarly journals A singular singularly perturbed system of nonlinear parabolic equations from chemical kinetics

1980 ◽  
Vol 74 (1) ◽  
pp. 296-310 ◽  
Author(s):  
L.E Bobisud ◽  
C.O Christenson
1982 ◽  
Vol 47 (8) ◽  
pp. 2087-2096 ◽  
Author(s):  
Bohumil Bernauer ◽  
Antonín Šimeček ◽  
Jan Vosolsobě

A two dimensional model of a tabular reactor with the catalytically active wall has been proposed in which several exothermic catalytic reactions take place. The derived dimensionless equations enable evaluation of concentration and temperature profiles on the surface of the active component. The resulting nonlinear parabolic equations have been solved by the method of orthogonal collocations.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 71 ◽  
Author(s):  
Olga Tsekhan

The problem of complete controllability of a linear time-invariant singularly-perturbed system with multiple commensurate non-small delays in the slow state variables is considered. An approach to the time-scale separation of the original singularly-perturbed system by means of Chang-type non-degenerate transformation, generalized for the system with delay, is used. Sufficient conditions for complete controllability of the singularly-perturbed system with delay are obtained. The conditions do not depend on a singularity parameter and are valid for all its sufficiently small values. The conditions have a parametric rank form and are expressed in terms of the controllability conditions of two systems of a lower dimension than the original one: the degenerate system and the boundary layer system.


2000 ◽  
Vol 10 (12) ◽  
pp. 2669-2687 ◽  
Author(s):  
JOHN GUCKENHEIMER ◽  
KATHLEEN HOFFMAN ◽  
WARREN WECKESSER

Singularly perturbed systems of ordinary differential equations arise in many biological, physical and chemical systems. We present an example of a singularly perturbed system of ordinary differential equations that arises as a model of the electrical potential across the cell membrane of a neuron. We describe two periodic solutions of this example that were numerically computed using continuation of solutions of boundary value problems. One of these periodic orbits contains canards, trajectory segments that follow unstable portions of a slow manifold. We identify several mechanisms that lead to the formation of these and other canards in this example.


Author(s):  
Verena Bögelein ◽  
Andreas Heran ◽  
Leah Schätzler ◽  
Thomas Singer

AbstractIn this article we prove a Harnack inequality for non-negative weak solutions to doubly nonlinear parabolic equations of the form $$\begin{aligned} \partial _t u - {{\,\mathrm{div}\,}}{\mathbf {A}}(x,t,u,Du^m) = {{\,\mathrm{div}\,}}F, \end{aligned}$$ ∂ t u - div A ( x , t , u , D u m ) = div F , where the vector field $${\mathbf {A}}$$ A fulfills p-ellipticity and growth conditions. We treat the slow diffusion case in its full range, i.e. all exponents $$m > 0$$ m > 0 and $$p>1$$ p > 1 with $$m(p-1) > 1$$ m ( p - 1 ) > 1 are included in our considerations.


Sign in / Sign up

Export Citation Format

Share Document