Chain elongation rate of messenger and polypeptides in slowly growing Escherichia coli

1971 ◽  
Vol 60 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Robert L. Coffman ◽  
Thomas E. Norris ◽  
Arthur L. Koch
1998 ◽  
Vol 180 (17) ◽  
pp. 4704-4710 ◽  
Author(s):  
Anne Farewell ◽  
Frederick C. Neidhardt

ABSTRACT In this report, we examine the effect of temperature on protein synthesis. The rate of protein accumulation is determined by three factors: the number of working ribosomes, the rate at which ribosomes are working, and the rate of protein degradation. Measurements of RNA/protein ratios and the levels of individual ribosomal proteins and rRNA show that the cellular amount of ribosomal machinery in Escherichia coli is constant between 25 and 37°C. Within this range, in a given medium, temperature affects ribosomal function the same as it affects overall growth. Two independent methodologies show that the peptide chain elongation rate increases as a function of temperature identically to growth rate up to 37°C. Unlike the growth rate, however, the elongation rate continues to increase up to 44°C at the same rate as between 25 and 37°C. Our results show that the peptide elongation rate is not rate limiting for growth at high temperature. Taking into consideration the number of ribosomes per unit of cell mass, there is an apparent excess of protein synthetic capacity in these cells, indicating a dramatic increase in protein degradation at high temperature. Temperature shift experiments show that peptide chain elongation rate increases immediately, which supports a mechanism of heat shock response induction in which an increase in unfolded, newly translated protein induces this response. In addition, we find that at low temperature (15°C), cells contain a pool of nontranslating ribosomes which do not contribute to cell growth, supporting the idea that there is a defect in initiation at low temperature.


1976 ◽  
Vol 160 (2) ◽  
pp. 185-194 ◽  
Author(s):  
R Young ◽  
H Bremer

By evaluating the kinetics of radioactive labelling of nascent and finished polypeptides, the peptide-chain elongation rate for Escherichia coli B/r at three different growth rates (mu) was determined to be 17 amino acids/s for the fast-growing cells (mu equals 1.3 and 2.0 doublings/h) and 12 amino acids/s for slow-growing cells (mu equals 0.67 doublings/h). The results agree with the growth-rate-dependence of the rate of peptide-chain elongation found for the translation of newly induced β-galactosidase messenger in this strain and under these conditions of growth [Dalbow & Young (1975) Biochem. J. 150, 13-20]. Together with the previously observed ribosome efficiency at these growth rates [Dennis & Bremer (1974) J. Mol. Biol. 84, 407-422] the results indicate that the fraction of ribosomes engaged in protein synthesis is about 0.8 at all three growth rates.


Genetics ◽  
1972 ◽  
Vol 70 (1) ◽  
pp. 175-180
Author(s):  
LaDonna Immken ◽  
David Apirion

ABSTRACT 3″,5″ cyclic-AMP (cAMP) will stimulate the rate of tryptophanase synthesis in Escherichia coli cultures induced with tryptophan. Adding cAMP after the initiation of messenger RNA synthesis was blocked by rifampicin, did not stimulate tryptophanase synthesis. This indicates that cAMP acts at initiation of either transcription or translation and not at the level of chain elongation of either the messenger or the polypeptide chain.


1983 ◽  
pp. 509-533
Author(s):  
Tuneko Okazaki ◽  
Yuji Kohara ◽  
Tohru Ogawa ◽  
Kin-ya Yoda ◽  
Asao Fujiyama ◽  
...  

2014 ◽  
Vol 112 (3) ◽  
pp. 743-748 ◽  
Author(s):  
Yara X. Mejia ◽  
Evgeny Nudler ◽  
Carlos Bustamante

Two components of the RNA polymerase (RNAP) catalytic center, the bridge helix and the trigger loop (TL), have been linked with changes in elongation rate and pausing. Here, single molecule experiments with the WT and two TL-tip mutants of the Escherichia coli enzyme reveal that tip mutations modulate RNAP’s pause-free velocity, identifying TL conformational changes as one of two rate-determining steps in elongation. Consistent with this observation, we find a direct correlation between helix propensity of the modified amino acid and pause-free velocity. Moreover, nucleotide analogs affect transcription rate, suggesting that their binding energy also influences TL folding. A kinetic model in which elongation occurs in two steps, TL folding on nucleoside triphosphate (NTP) binding followed by NTP incorporation/pyrophosphate release, quantitatively accounts for these results. The TL plays no role in pause recovery remaining unfolded during a pause. This model suggests a finely tuned mechanism that balances transcription speed and fidelity.


1986 ◽  
Vol 99 (2) ◽  
pp. 365-374
Author(s):  
Tomoko NISHIMAKI ◽  
Hiroshi YAMANAKA ◽  
Michinao MIZUGAKI

Sign in / Sign up

Export Citation Format

Share Document