scholarly journals Effect of Temperature on In Vivo Protein Synthetic Capacity in Escherichia coli

1998 ◽  
Vol 180 (17) ◽  
pp. 4704-4710 ◽  
Author(s):  
Anne Farewell ◽  
Frederick C. Neidhardt

ABSTRACT In this report, we examine the effect of temperature on protein synthesis. The rate of protein accumulation is determined by three factors: the number of working ribosomes, the rate at which ribosomes are working, and the rate of protein degradation. Measurements of RNA/protein ratios and the levels of individual ribosomal proteins and rRNA show that the cellular amount of ribosomal machinery in Escherichia coli is constant between 25 and 37°C. Within this range, in a given medium, temperature affects ribosomal function the same as it affects overall growth. Two independent methodologies show that the peptide chain elongation rate increases as a function of temperature identically to growth rate up to 37°C. Unlike the growth rate, however, the elongation rate continues to increase up to 44°C at the same rate as between 25 and 37°C. Our results show that the peptide elongation rate is not rate limiting for growth at high temperature. Taking into consideration the number of ribosomes per unit of cell mass, there is an apparent excess of protein synthetic capacity in these cells, indicating a dramatic increase in protein degradation at high temperature. Temperature shift experiments show that peptide chain elongation rate increases immediately, which supports a mechanism of heat shock response induction in which an increase in unfolded, newly translated protein induces this response. In addition, we find that at low temperature (15°C), cells contain a pool of nontranslating ribosomes which do not contribute to cell growth, supporting the idea that there is a defect in initiation at low temperature.

1976 ◽  
Vol 160 (2) ◽  
pp. 185-194 ◽  
Author(s):  
R Young ◽  
H Bremer

By evaluating the kinetics of radioactive labelling of nascent and finished polypeptides, the peptide-chain elongation rate for Escherichia coli B/r at three different growth rates (mu) was determined to be 17 amino acids/s for the fast-growing cells (mu equals 1.3 and 2.0 doublings/h) and 12 amino acids/s for slow-growing cells (mu equals 0.67 doublings/h). The results agree with the growth-rate-dependence of the rate of peptide-chain elongation found for the translation of newly induced β-galactosidase messenger in this strain and under these conditions of growth [Dalbow & Young (1975) Biochem. J. 150, 13-20]. Together with the previously observed ribosome efficiency at these growth rates [Dennis & Bremer (1974) J. Mol. Biol. 84, 407-422] the results indicate that the fraction of ribosomes engaged in protein synthesis is about 0.8 at all three growth rates.


1975 ◽  
Vol 150 (1) ◽  
pp. 13-20 ◽  
Author(s):  
D G Dalbow ◽  
R Young

By analysing the kinetics of β-galactosidase accumulation after induction, the synthesis time of β-galactosidase in Escherichia coli B/r was found to be 75s in rapidly growing cells (1.36 and 2.1 doublings/h), and 90s in slowly growing cells (0.63 doubling/h). These values correspond to peptide-chain-elongation rates of 16 and 13 amino acids/s respectively, in agreement with previous findings, indicating that the peptide-chain growth rate is constant (presumably maximal) in fast-growing bacteria, but decreased in slowly growing bacteria [Forchhammer & Lindahl (1971) J. Mol. Biol. 55, 563-568].


1969 ◽  
Vol 72 (3) ◽  
pp. 423-435 ◽  
Author(s):  
R. Q. Cannell

SUMMARYControlled-environment experiments showed that development of the coleoptile node tiller (T1) was suppressed much more than that of the tiller appearing in the axil of the first true leaf (T2) by high temperature (24/15 °C; 19/10 °C; 10/6 °C), by reduced photoperiod (16 h; 12·5 h) or by low light intensity (1100 ft-c; 1000 ft-c), but minimally in the newest variety, Deba Abed. Unlike previous field experiments, the T1 tiller appeared on more Spratt Archer than Maris Badger plants. Maris Badger plants produced more T1 tillers in a high-low temperature regime (19/10 °C; 10/6 °C) than in continuous low temperature (10/6 °C). In a field experiment T1 tiller number (and yield), but not the number of other major shoots, were severely reduced by late sowing of Spratt Archer, progressively reduced in Maris Badger, but minimally in Deba Abed. This seemed to be associated with higher temperatures at later sowings.


1943 ◽  
Vol 21c (8) ◽  
pp. 235-248 ◽  
Author(s):  
A. A. Hildebrand ◽  
L. W. Koch

During the summer of 1942 sugar beets growing in an experimental plot at the Harrow laboratory were destroyed by a root rot of a type that apparently has been reported only once previously on this host in North America. Wilting of the foliage first attracts attention to affected plants, the roots of which show, externally, grayish-brown discoloured areas and, internally, fairly sharply-delimited, grayish to coffee-coloured lesions, affected tissues being more or less spongy in consistency. The causal organism, found to be a wound parasite, has been identified as Rhizopus arrhizus Fischer. The effect of temperature on the growth in culture and on the pathogenicity of this fungus and of representatives of the species, R. oryzae and R. nigricans, has been studied. It has been found that R. arrhizus and R. oryzae are relatively high temperature organisms, showing optimum growth at about 34° to 36 °C., and each capable of infecting and destroying artificially injured sugar beets most rapidly between 30° and 40 °C. R. nigricans, also a wound parasite is, on the other hand, a relatively low temperature organism showing optimum growth in culture at about 24° and displaying highest infection capability at about 14° to 16 °C.


2012 ◽  
Vol 706-709 ◽  
pp. 768-773
Author(s):  
Masahiro Nishida ◽  
Koichi Hayashi ◽  
Junichi Nakagawa ◽  
Yoshitaka Ito

The influence of temperature on crater formation and ejecta composition in thick aluminum alloy targets were investigated for impact velocities ranging from approximately 1.5 to 3.5 km/s using a two-stage light-gas gun. The diameter and depth of the crater increased with increasing temperature. The ejecta size at low temperature was slightly smaller than that at high temperature and room temperature. Temperature did not affect the size ratio of ejecta. The scatter diameter of the ejecta at high temperature was slightly smaller than those at low and room temperatures.


1993 ◽  
Vol 310 ◽  
Author(s):  
Barbara Charlet ◽  
Kerrie E. Davies

AbstractPZT films were etched in an ECR microwave reactor with RF polarization.The etch rate was evaluated using various gas mixtures including combinations of two of the following: C12, NF3, SF6 and HBr. The etch rate was measured as a function of the percentage of one gas in the mixture. Other parameters investigated included gas pressure, bias voltage on the electrode and substrate temperature.Results of the effect of temperature show that etch rates are higher on high temperature substrates than on low temperature substrates. A mixture of C12 and SF2 provided a PZT etch rate of 750 Å / min on a substrate, at approximately 100 °C. We evaluated the resultant etch profile and surface roughness


Sign in / Sign up

Export Citation Format

Share Document