scholarly journals Theoretical Study of Isospin Mixing States with T> 0 in sd Even-Even N=Z Nuclei Using Shell Model

Author(s):  
Anwer A. Al-Sammarraie , Et. al.

Nuclear excited states with T > 0 in sd even-even N=Z  nuclei have been studied by using shell model. The calculations have employed the USDB Hamiltonian in order to predict the energy levels, the reduced electric quadrupole transition probabilities and reduced magnetic dipole transition probabilities. The study also include the average number of nucleons in each sd- active orbitals. The results compared with available experimental data.  The comparison showed a good agreement between theoretical and experimental energy sates for most of the states studied in this work. On the other hand there was a difference between theoretical and experimental values of transition probabilities, but it can be said that it remained within the acceptable range of the difference.

2021 ◽  
Author(s):  
Mustafa Mohammed Jabbar ◽  

In current study ,92Nb and 92Mo isotopes have been determined for calculating energy levels and electric quadrupole transition probabilities. Two interaction have been applied in this study are surface delta and modified surface delta interactions. The calculations have been achieved by using appropriate effective charges for proton and neutron as well as parameter length of harmonic potential. Computed results have been compared with the experimental values. After this comparison, energy and the transition probability values have a good agreement with the experimental values, also there are values of the total angular momentum and parity are determined and confirmed for some of the experimental energies, undetermined and unconfirmed experimentally. Theoretically, new values of quadrupole electric transition probabilities have been explored which have not been known in the experimental data.


2018 ◽  
Vol 63 (3) ◽  
pp. 189 ◽  
Author(s):  
A. K. Hasan

The shell model (SM) is used to calculate the energy levels and transition probabilities B(E2) for 18,19,20 O isotopes. Two interactions (USDA and USDB) are used in the SDPN model space. We assume that all possible many-nucleon configurations are defined by the 0d5/2, 1s1/2, and d3/2 states that are higher than in 16 O doubly magic nucleus. The available empirical data are in a good agreement with theoretical energy levels predictions. Spins and parities were affirmed for new levels, and the transition probabilities B(E2; ↓) are predicted.


2001 ◽  
Vol 79 (7) ◽  
pp. 999-1009 ◽  
Author(s):  
C Colón ◽  
A Alonso-Medina

Radiative transition probabilities for 190 lines arising from the ns 2S1/2, np 2P1/2,3/2, nd 2D3/2,5/2, nf 2F5/2,7/2, and 6p2 (4P1/2,3/2,5/2, 2D3/2,5/2, 2P1/2,3/2, and 2S1/2) levels of Pb(II) have been calculated. Lifetimes of the above mentioned levels have been determined from the present transition probabilities. These values were obtained in intermediate coupling (IC) and using ab initio relativistic Hartree-Fock calculations. For the IC calculations, we use the standard method of least-square fitting of experimental energy levels by means of computer codes from Cowan. The results of calculations for radiative transition probabilities and excited states lifetimes are presented and compared with the experimental results present in the literature and with other theoretical values. There is generally good agreement between our values and the experimental data available. Analysis of the interaction shows that the level 4P5/2 of the 6s6p2 configuration presents a large contribution to the 2D5/2 level of the 6s26d configuration. This result explains the good agreement between our result and the experimental values obtained to the observed as the 6s6p2 4P5/2 – 6s 25f2F7/2 dipole-forbidden transition. PACS Nos.: 32.70^*, 32.70Fw, 32.70Cs


2015 ◽  
Vol 723 ◽  
pp. 799-803
Author(s):  
Min Xu

Wavelengths, transition probabilities and oscillator strengths have been calculated for electric dipole (E1) transitions and magnetic dipole (M1) transitions in Cu-like Au ion. These values are obtained in the configuration interaction (CI) and using the fully relativistic multiconfiguration Dirac-Fock (MCDF) method including quantum electrodynamical (QED) effect and Breit correction. Obtained energy levels of some excited states in Cu-like Au ion from the method are generally in good agreement with valuable theoretical and experimental results. The calculation results indicate that for high-Z highly ionized atom, some forbidden transitions are very important.


Author(s):  
Miao Wu ◽  
Zhencen He

The spectral parameters (energy levels, wavelengths, transition probabilities, line strengths and oscillator strengths) of resonance lines for Ba VIII, La IX and Ce X have been performed using the multiconfiguration Dirac-Hartree-Fock method, the contributions of quantum electrodynamics and Breit interactions correction are taken into considered. The calculated results of energy levels and wavelengths are in good agreement with experimental values and other calculation. The number of energy levels and wavelengths considered is larger than that of any other experiment values and other calculations. The transition probabilities, line strengths and oscillator strengths are also calculated where no other theoretical results and experimental values are available.


2016 ◽  
Vol 94 (4) ◽  
pp. 359-364 ◽  
Author(s):  
Miao Wu ◽  
Guojie Bian ◽  
Xiangfu Li ◽  
Min Xu ◽  
Quanping Fan ◽  
...  

The multi-configuration Dirac–Hartree–Fock method and active space approach are used to investigate the energy levels, hyperfine structure constants, and transition probabilities of a neutral silicon atom. The contributions of Breit interactions and quantum electrodynamics correction are considered. Compared with other theoretical and experimental values of energy levels, our values are in good agreement; the discrepancies of the majority of energy levels calculated are within 1% of experimental values, and the energy levels calculated are very close to other theoretical values. The number of energy levels we considered is larger than that of any other theoretical calculations. The values of the hyperfine structure constant A of the radioactive 29Si atom that we calculated are in good agreement with experimental values. From these results we can predict the hyperfine structure constant A of other states of 29Si where no other theoretical results are available. The transition probabilities of neutral silicon have also been calculated and discussed.


Author(s):  
Ali Hasan ◽  
Fatema Obeed ◽  
Azahr Rahim

The nuclear shell-model has been used to compute excitation levels of ground band and electric quadrupole transitions for 50-51Mn isotopes in f-shell. In the present study, f742pn and f7cdpn effective interactions have been carried out in full f-shell by using Oxbash Code. The radial wave functions of the single-particle matrix elements have been calculated in terms of the harmonic oscillator (Ho) and Skyrme20 potentials. The predicted theoretical results have been compared with the available experimental data; it has been seen that the predicted results are in agreement with the experimental data. From the current results of the calculations, many predictions of angular momentum and parities of experimental states have been made, and the energy spectra predictions of the ground band and B(E2; ↓) electric quadrupole transitions in 50-51Mn isotopes of the experimental data are not known yet. In the nuclear shell-model calculations framework, energy levels have been determined for 50-51Mn isotopes; new values of electric quadrupole transitions have been predicted in the studied results. This investigation increases the theoretical knowledge of all isotopes with respect to the energy levels and reduced transition probabilities.


2019 ◽  
Vol 97 (7) ◽  
pp. 791-796
Author(s):  
Miao Wu ◽  
Lianlian Sun ◽  
Xiangfu Li ◽  
Ji Zhang

The multi-configuration Dirac–Hartree–Fock (MCDHF) method and the active space approach have been employed to investigate the energy levels, wavelengths, transition probabilities, and line strengths of Si-like Se ions. The contributions of Breit interaction (BI) and quantum electrodynamic (QED) correction are taken into consideration. The wavelengths, transition probabilities, and line strengths of Si-like Se ions have also been calculated. Compared with other theoretical and experimental values of these parameters, our values are in good agreement with others, and the number of energy levels we considered is larger than that of any other theoretical calculations.


2020 ◽  
Vol 65 (1) ◽  
pp. 3
Author(s):  
A. K. Hasan ◽  
F. H. Obeed ◽  
A. N. Rahim

The energy levels and transition probabilities B(E2; ↓) i B(M1; ↓) have been investigated for 21,23Na isotopes by using the (USDA and USDB) interactions in the (sd-shell) model space. In the calculations of the shell model, it has been assumed that all possible many-nucleon configurations are specified by the (0d5/2, 1s1/2 i 0d3/2) states above 16O doubly magic nucleus. The available empirical data are in a good agreement with predictions of theoretical energy levels. Spins and parities are affirmed for new levels, transition probabilities B(E2; ↓) and B(M1; ↓) are predicted as well.


1999 ◽  
Vol 08 (01) ◽  
pp. 17-38 ◽  
Author(s):  
D. BUCURESCU ◽  
I. CĂTA-DANIL ◽  
M. IVAŞCU ◽  
N. MĂRGINEAN ◽  
L. STROE ◽  
...  

The lifetimes of twelve low spin excited states in 73 As , below 2 MeV excitation, have been measured with the DSA method in the 73 Ge ( p , n γ) reaction. The existing data (energy levels, electromagnetic moments, transition probabilities and branching ratios, one-nucleon transfer spectroscopic factors) are discussed in the frame of multi-shell interacting boson-fermion model calculations. A good agreement is obtained for a large number of levels.


Sign in / Sign up

Export Citation Format

Share Document