Calculation of Wavelengths, Transition Probabilities and Oscillator Strengths for E1 and M1 Transitions in Cu-Like Au Ion

2015 ◽  
Vol 723 ◽  
pp. 799-803
Author(s):  
Min Xu

Wavelengths, transition probabilities and oscillator strengths have been calculated for electric dipole (E1) transitions and magnetic dipole (M1) transitions in Cu-like Au ion. These values are obtained in the configuration interaction (CI) and using the fully relativistic multiconfiguration Dirac-Fock (MCDF) method including quantum electrodynamical (QED) effect and Breit correction. Obtained energy levels of some excited states in Cu-like Au ion from the method are generally in good agreement with valuable theoretical and experimental results. The calculation results indicate that for high-Z highly ionized atom, some forbidden transitions are very important.

2017 ◽  
Vol 95 (3) ◽  
pp. 283-290 ◽  
Author(s):  
Min Xu ◽  
Anying Yan ◽  
Shuang Wu ◽  
Feng Hu ◽  
Xiangfu Li

Wavelengths, transition probabilities, and oscillator strengths have been calculated for M-shell electric dipole (E1) transitions in Al-like W61+ through Cl-like W57+, with partially filled 3p subshell. The fully relativistic multiconfiguration Dirac–Fock (MCDF) method, taking quantum electrodynamical effect and Breit correction into account, was used in the calculations. Calculated energy levels of M-shell excited states in Al-like through Cl-like W ions from the method were compared with some available theoretical and experimental results, and good agreement with them was achieved.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Betül Karaçoban ◽  
Leyla Özdemir

The transition parameters such as the wavelengths, weighted oscillator strengths, and transition probabilities (or rates) for the nd (n=5−9)−nf (n=4−8), nd (n=5−9)−np (n=6−9), np (n=6−9)−ns (n=6−10), and ng (n=5−8)−nf (n=4−8) electric dipole (E1) transitions of doubly ionized lanthanum (La III, Z=57) have been calculated using the relativistic Hartree-Fock (HFR) method. In this method, configuration interaction and relativistic effects have been included in the computations combined with a least squares fitting of the Hamiltonian eigenvalues to the observed energy levels. We have compared the results obtained from this work with the previously available calculations and experiments in literature. We have also reported new transitions with the weighted transition probabilities greater than or equal to 105.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dhia Elhak Salhi ◽  
Soumaya Manai ◽  
Sirine Ben Nasr ◽  
Haikel Jelassi

Abstract Energy levels, wavelengths, weighted oscillator strengths, transition probabilities and lifetimes are calculated for all levels of 1s 2 and 1snl (n = 2–6) configurations of He-like cadmium ion (Cd XLVII). The calculations were carried out using three codes GRASP2018, FAC and AMBiT in order to provide theoretically the most accurate data. Transition probabilities are reported for all the E1, E2, M1 and M2 transitions. Breit interactions and quantum electrodynamics effects are included in the RCI calculations. Comparisons were made with other calculations and a good agreement was found which confirms the reliability of our results. We present some missing data for the He-like cadmium in this paper for the first time.


2019 ◽  
Vol 97 (5) ◽  
pp. 529-536
Author(s):  
Selda Eser ◽  
Leyla Özdemir

We have reported the wavelengths, transition probabilities (or rates), oscillator strengths, and line strengths for forbidden transitions (electric quadrupole, E2, and magnetic dipole, M1) in doubly and triply ionized krypton, xenon, and radon using the general-purpose relativistic atomic structure package (GRASP). The results obtained from transitions between the levels of ground state configuration are in agreement with other available results in the literature. The data on forbidden transitions between high levels for these ions have been firstly presented in this work.


2015 ◽  
Vol 93 (5) ◽  
pp. 487-495 ◽  
Author(s):  
Arun Goyal ◽  
Indu Khatri ◽  
Sunny Aggarwal ◽  
A.K. Singh ◽  
Man Mohan

Energy levels, wavefunction compositions, and lifetimes are computed for all levels of 4s24p5, 4s24p44d, and 4s4p6 configurations in Br-like ions (Z = 47–50). We use the multiconfigurational Dirac–Fock method to generate the wavefunctions. We also present the transition wavelengths, oscillator strengths, transition probabilities, and line strengths for the electric dipole (E1) transition from the ground state configuration. We compare our calculated results with the available data in the literature and good agreement is obtained, which confirms the quality of our results. Moreover, we predict some new atomic data that have not been available so far and may be important for plasma diagnostic analysis in fusion plasma.


Author(s):  
Miao Wu ◽  
Zhencen He

The spectral parameters (energy levels, wavelengths, transition probabilities, line strengths and oscillator strengths) of resonance lines for Ba VIII, La IX and Ce X have been performed using the multiconfiguration Dirac-Hartree-Fock method, the contributions of quantum electrodynamics and Breit interactions correction are taken into considered. The calculated results of energy levels and wavelengths are in good agreement with experimental values and other calculation. The number of energy levels and wavelengths considered is larger than that of any other experiment values and other calculations. The transition probabilities, line strengths and oscillator strengths are also calculated where no other theoretical results and experimental values are available.


2016 ◽  
Vol 94 (11) ◽  
pp. 1167-1174 ◽  
Author(s):  
Gülay Günday Konan ◽  
Leyla Özdemir

We have reported energies and electric dipole transition parameters, such as transition probabilities, oscillator strengths, line strengths, and wavelengths for Na-like gold (Au68+, Z = 79) using AUTOSTRUCTURE atomic code. Calculations include Breit and QED contributions besides correlation effects. A few of the results have been compared with available theoretical and experimental results in the literature. Our atomic structure data for sodium-like gold are in good agreement with others. Also we have presented new results for electric dipole transitions in sodium-like gold.


2017 ◽  
Vol 95 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Feng Hu ◽  
Yan Sun ◽  
Meifei Mao

Based on relativistic wavefunctions from multiconfigurational Dirac–Hartree–Fock and configuration interaction calculations, energy levels, radiative rates, and wavelengths are evaluated for all levels of 3s23p, 3s3p2, 3s23d, 3p3, 3s3p3d, 3p23d, and 3s3d2 configurations of Al-like molybdenum ion (Mo XXX). Transition probabilities are reported for E1 and M2 transitions from the ground level. The valence–valence and core–valence correlation effects are accounted for in a systematic way. Breit interactions and quantum electrodynamics effects are estimated in subsequent relativistic configuration interaction calculations. Comparisons are made with the available data in the literature and good agreement has been found, which confirms the reliability of our results.


2014 ◽  
Vol 92 (9) ◽  
pp. 1043-1046 ◽  
Author(s):  
Şule Ateş ◽  
Yasin Gökçe ◽  
Gültekin Çelik ◽  
Murat Yıldız

Electric dipole transition probabilities and oscillator strengths for singly ionized terbium (Tb II) have been calculated with the weakest bound electron potential model (WBEPM) theory using experimental energy levels and theoretical expectation values of orbital radii corresponding to those energy levels under the assumption of the Jj coupling scheme. The transition probabilities and the oscillator strengths calculated have been compared with available data in the literature. A good agreement has been obtained. In this work, the WBEPM theory has been applied to heavy atoms, such as Tb II, for the first time.


2014 ◽  
Vol 92 (11) ◽  
pp. 1285-1296 ◽  
Author(s):  
Sunny Aggarwal ◽  
Nupur Verma ◽  
A.K. Singh ◽  
Narendra Singh ◽  
Rinku Sharma ◽  
...  

We present accurate atomic structure calculations for the lowest 200 fine structural energy levels for oxygen-like nickel, which may be a useful ion for both astrophysical and fusion plasmas. For the calculations of energy levels and radiative rates, we have used the multiconfigurational Dirac–Fock method. Our results are compared with those obtained using other numerical methods and experiments so that their accuracy can be assessed. The transition wavelengths, oscillator strengths, and radiative rates are reported for electric dipole (E1) transitions from the ground state. We have also presented the transition probabilities and transition wavelength of some forbidden transitions. Finally, we predict new energy levels, oscillator strengths, and transition probability data, where no other theoretical or experimental results are available, which may be useful for future experimental work.


Sign in / Sign up

Export Citation Format

Share Document