A simulation model for the prediction of the ground pressure distribution under tracked vehicles

1993 ◽  
Vol 30 (6) ◽  
pp. 461-469 ◽  
Author(s):  
J.K. Gigler ◽  
S.M. Ward
2014 ◽  
Vol 526 ◽  
pp. 115-120
Author(s):  
Xi Yang Liu ◽  
Zhi Yong Jiao ◽  
Mei Yu Zhang

The grounding pressure of tracked vehicles is closely related to the overall structure of the vehicles and the ground conditions, and its distribution is more complex and changes in the different center of gravity. So in this paper, under certain assumptions, we derive the mathematical model of the grounding pressure distribution through analysis and research, which can predict the ground pressure distribution of tracked vehicles at any moment. By analyzing the tracked grounding pressure distribution, we put forward the concept of core region of track connecting with the ground, and some meaningful conclusions and formulas for the overall design of tracked vehicles.


1981 ◽  
Vol 98 (4) ◽  
pp. 263-269 ◽  
Author(s):  
Haim Stein ◽  
Ariel Simkin ◽  
Keenan Joseph

Author(s):  
Jian He ◽  
Dalin Wu ◽  
Jisheng Ma ◽  
Hongkai Wang ◽  
Yuliang Yang

The influence law of a tracked vehicle grouser shape on the soil slide sinkage was investigated in this study via the numerical simulations and physical tests. A finite element model was built using the plastic incremental theory and generalized Hokker’s law, while constitutive soil parameters were obtained via triaxial test. The numerical simulation model was verified by physical test results. Based on the verified numerical simulation model, the influence law of the tracked vehicle grouser shape on the soil slide sinkage was determined. The results show that (1) shear displacement in the lateral direction can increase the soil sinkage in the vertical direction, which is referred to as the “slide sinkage”; (2) there is a linear relationship between the slide sinkage and the shear displacement; (3) the grouser width and height have a positive influence on the amount of slide sinkage. Under the same load, an increase in grouser width and height will cause an increase in the soil slide sinkage. Grouser thickness and pitch have a negative influence on the slide sinkage, and under the same load, increased grouser width and height cause a reduction in the soil slide sinkage. Grouser angle characteristics have no significant effect on the soil sinkage. The application of the slide sinkage in tracked vehicles traveling on soft roads was investigated in multibody system dynamics analysis software Recurdyn to confirm these observations. The results presented in this paper may provide a workable reference for the analysis of tracked vehicles in multibody system dynamics scenarios.


Author(s):  
J Y Wong

This paper describes the results of a study of the effects of articulation joint configuration, suspension characteristics, location of the centre of gravity and initial track tension on the mobility of a two-unit, articulated tracked vehicle. The study was carried out using a comprehensive computer simulation model known as NTVPM-86. The results show that suspension characteristics, location of the centre of gravity and initial track tension have noticeable effects on the mobility of articulated tracked vehicles over marginal terrain, while the articulation joint angle has a less significant influence on vehicle performance. Locking the articulation joint between the two units of an articulated tracked vehicle usually causes a degradation of tractive performance. The approach to the optimization of the design of articulated tracked vehicles is demonstrated. It is shown that the simulation model NTVPM-86 can play a significant role in the optimization of articulated tracked vehicle design or in the evaluation of vehicle candidates for a given mission and environment.


Author(s):  
Y Gao ◽  
J Y Wong

In the past decade, a computer aided method for design evaluation of high-speed tracked vehicles with flexible tracks (or tracks with relatively short track pitch commonly in use in tracked transport vehicles and military vehicles) has been developed. It has been successfully used in assisting vehicle manufacturers in the development of new products and governmental agencies in the selection of vehicle candidates. For low-speed tracked vehicles commonly in use in agriculture, construction and logging, rigid tracks with relatively long track pitch are employed to achieve a more uniform ground pressure distribution. To assist manufacturers of this type of vehicle to expedite the development of new products in a cost effective manner, a computer aided method for design evaluation of tracked vehicles with rigid links has recently been developed. It treats the track as a system of interconnected rigid links and takes into account the characteristics of the interaction between track links and deformable terrain. The basic features of the method have been verified by field test data. The method can be an extremely useful tool for the engineer to optimize vehicle design and for the procurement manager to select appropriate vehicle candidates to meet specific operating requirements.


Sign in / Sign up

Export Citation Format

Share Document