Velocity fields for circular plates with the von Mises yield condition

1958 ◽  
Vol 6 (3) ◽  
pp. 231-235 ◽  
Author(s):  
G. Eason
1973 ◽  
Vol 40 (3) ◽  
pp. 799-802 ◽  
Author(s):  
H. M. Haydl ◽  
A. N. Sherbourne

Limit loads of circular plates under combined transverse and in-plane loading are given for the von Mises yield condition. Ivanov’s approximation to the Ilyushin yield surface is used. Collapse load interaction curves and stress fields are given for simply supported and clamped plates. The results are compared with existing solutions for the title problem based on the Tresca yield criterion.


1973 ◽  
Vol 8 (2) ◽  
pp. 108-112
Author(s):  
H M Haydl ◽  
A N Sherbourne

Limit loads of variable-thickness circular plates are given for the von Mises yield condition. The plates are loaded with a uniform transverse pressure and are hinge supported at the edge. The effect of transverse shear on the yield condition and the collapse load is examined. It is shown that the inclusion of transverse shear in the analysis leads to restrictions on the edge thickness of the plates.


Author(s):  
Thomasina V. Ball ◽  
Neil J. Balmforth

An asymptotic model is constructed to describe the bending of thin sheets, or plates, of viscoplastic fluid described by the Herschel–Bulkley constitutive law, which incorporates the von Mises yield condition and a nonlinear viscous stress. The model reduces to a number of previous ones from plasticity theory and viscous fluid mechanics in various limits. It is characterized by a yield criterion proposed by Ilyushin which compactly combines the effect of the bending moment and in-plane stress tensors through three particular invariants. The model is used to explore the bending of loaded flat plates, the deflection of impulsively driven circular plates, and the tension-controlled deflection of loaded beams.


A method for the analysis of the plastic deformation of a circular plate subject to projectile impact is presented based on the assumption that the material is rigid viscoplastic, obeying a von Mises yield condition and associated flow rule. The predictions of the analysis are com­pared with the results of experiments in which projectiles of different masses are fired at various velocities at clamped plates of mild steel. The plates used in the experiments are such that substantial plastic strains can develop, while the maximum displacements are of the same order as the thickness. The analytical method presented predicts the behaviour of the plates to within the accuracy of the tests. The material constants which fit the results are in accord with those obtained from different tests.


1991 ◽  
Vol 113 (4) ◽  
pp. 404-410 ◽  
Author(s):  
W. R. Chen ◽  
L. M. Keer

An incremental plasticity model is proposed based on the von-Mises yield condition, associated flow rule, and nonlinear kinematic hardening rule. In the present model, fatigue life prediction requires only the uniaxial cycle stress-strain curve and the uniaxial fatigue test results on smooth specimens. Experimental data of 304 stainless steel and 1045 carbon steel were used to validate this analytical model. It is shown that a reasonable description of steady-state hysteresis stress-strain loops and prediction of fatigue lives under various combined axial-torsional loadings are given by this model


Author(s):  
J M Kihiu ◽  
G O Rading ◽  
S M Mutuli

A three-dimensional finite element method computer program was developed to establish the elastic-plastic, residual and service stress distributions in thick-walled cylinders with flush and non-protruding plain cross bores under internal pressure. The displacement formulation and eight-noded brick isoparametric elements were used. The incremental theory of plasticity with a 5 per cent yield condition (an element is assumed to have yielded when the effective stress is within 5 per cent of the material yield stress) and von Mises yield criterion were assumed. The frontal solution technique was used. The incipient yield pressure and the pressure resulting in a 0.3 per cent overstrain ratio were established for various cylinder thickness ratios and cross bore-main bore radius ratios. For a thickness ratio of 2.25 and a cross bore-main bore radius ratio of 0.1, the stresses were determined for varying overstrain and an optimum overstrain ratio of 37 per cent was established. To find the accuracy of the results, the more stringent yield condition of 0.5 per cent was also considered. The benefits of autofrettage were presented and alternative autofrettage and yield condition procedures proposed.


1982 ◽  
Vol 104 (4) ◽  
pp. 552-557 ◽  
Author(s):  
S. Suresh ◽  
S. Bahadur

The lubricating behavior of polytetrafluoroethylene, polyvinyl chloride, polychlorotrifluoroethylene, low density polyethylene, and high density polyethylene powders in the extrusion of 1100-0 aluminum has been investigated in terms of the extrusion force requirement and the quality of extrudate surface finish. Extrusion experiments which provided a measure of the extrusion force and friction force with varying ram travel were performed under both ambient and high temperature conditions. From these data the variation of coefficient of friction with ram travel and normal pressure has been calculated using the analysis based on von Mises’ yield criterion and spherical velocity fields. The effect of polymer powder particle size on the extrusion force was investigated. The extrudate surfaces were examined by scanning electron miscroscopy in order to study the film formation capability of polymers and to get an insight into the mechanism of polymer lubrication.


1968 ◽  
Vol 35 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Norman Jones

It is clear from a survey of literature on the dynamic deformation of rigid-plastic plates that most work has been focused on plates in which either membrane forces or bending moments alone are considered important, while the combined effect of membrane forces and bending moments on the behavior of plates under static loads and beams under dynamic loads is fairly well established. This paper, therefore, is concerned with the behavior of circular plates loaded dynamically and with deflections in the range where both bending moments and membrane forces are important. A general theoretical procedure is developed from the equations for large deflections of plates and a simplified yield condition due to Hodge. The results obtained when solving the governing equations for the particular case of a simply supported circular plate loaded with a uniform impulsive velocity are found to compare favorably with the corresponding experimental values recorded by Florence.


1966 ◽  
Vol 33 (1) ◽  
pp. 149-158 ◽  
Author(s):  
H. H. Bleich ◽  
Ivan Nelson

The most general case of plane wave propagation, when normal and shear stresses occur simultaneously, is considered in a material obeying the von Mises yield condition. The resulting nonlinear differential equations have not been solved previously for any boundary-value problem, except for special situations where the differential equations degenerate into linear ones. In the present paper, the stresses in a half-space, due to a uniformly distributed step load of pressure and shear on the surface, are obtained in closed form.


Sign in / Sign up

Export Citation Format

Share Document