Temporal and spatial relationship between sediment grain size and beach profile

1994 ◽  
Vol 118 (3-4) ◽  
pp. 195-206 ◽  
Author(s):  
R Medina ◽  
M.A Losada ◽  
I.J Losada ◽  
C Vidal
Author(s):  
Jannette B. Frandsen ◽  
Régis Xhardé ◽  
Francis Bérubé ◽  
Olivier Gauvin Tremblay

We have investigated beach stability against storm waves. The studies are done in relation to eroded beaches. We are testing a cobble-sand-gravel mixture as a means of using a soft method for coastal protection on nourished beaches. A physical model of an existing beach was built at scale 1:3. The cobble/sand grain size is in 1:3 scale while the gravel is 1:1.5 scale. The large scale experimental flume tests have been set-up in the new outdoor 120 m long flume in Québec city, Canada. The tests were conducted over two test seasons (2013–14). While we in the first test season studied impact on the beach due to incoming regular plunging breakers, the last season contained tests with incoming irregular plunging breakers on the beach with/without tidal variation. Herein, we primarily report on the wave impact due to irregular plunging breakers on constant and tidal varying water depths. The wave-tide interactions were conducted with a tidal range of 1 m in relation to beaches with steep beach slopes (1:10, 1:5, 1:1). The model inlet significant wave height was 1.1–1.5 m corresponding to equivalent prototype waves in the range of max. wave heights of 6–8.5 m with dominant periods of 12 s in water depth of about 15 m and tidal range of 3 m. In general, the Equilibrium Beach Profile (EBP) was reached after exposure to about 10,000 plunging breakers or the equivalent of five storms assuming each lasting 3 hours. A cobble berm was formed rapidly on the top of the beach, protecting the backshore against wave action and flooding while finer sediment was transported “offshore”. Beach width reduction was observed when the initial slope of the beach fill material exceeded the equilibrium beach slope. Sediment grain size sorting along the beach profile is discussed and compared to existing beach models, and EBP was compared to several EBP equations. From a coastal management perspective, in terms of durability, the mixed cobble-sand-gravel material is showing promise as a material to use for coastal protection. It is highly absorbent and the beach tends to maintain its shape over long time when exposed to several storms. However, storm surges in the combination with high tides can results in excessive run-up and potential flood risks. The stabilized beach typically had slopes of 1:7–1:9 independent of the initial slope. We found that irregular seas result in a less pronounced trough in the beach profile in the swash zone than incoming regular plunging breakers. The tidal interaction was further advantageous, naturally shifting the material back and forth. However, other materials and other sensitivity studies are necessary in order to provide firm conclusions about the usage of the cobble-gravel-sand mixture for coastal protection.


2021 ◽  
Vol 11 (6) ◽  
pp. 2799
Author(s):  
Yanping Chen ◽  
Wenzhe Lyu ◽  
Tengfei Fu ◽  
Yan Li ◽  
Liang Yi

The Huanghe River (Yellow River) is the most sediment laden river system in the world, and many efforts have been conducted to understand modern deltaic evolution in response to anthropological impacts. However, the natural background and its linkage to climatic changes are less documented in previous studies. In this work, we studied the sediments of core YDZ–3 and marine surface samples by grain-size analysis to retrieve Holocene dynamics of the Huanghe River delta in detail. The main findings are as follows: The mean value of sediment grain size of the studied core is 5.5 ± 0.9 Φ, and silt and sand contents are 5.2 ± 2.3% and 8.2 ± 5.3%, respectively, while the variance of clay particles is relatively large with an average value of 86.4 ± 8.5%. All grain-size data can be mathematically partitioned by a Weibull-based function formula, and three subgroups were identified with modal sizes of 61.1 ± 28.9 μm, 30.0 ± 23.9 μm, and 2.8 ± 1.6 μm, respectively. There are eight intervals with abrupt changes in modal size of core YDZ–3, which can be correlated to paleo-superlobe migration of the Huanghe River in the Holocene. Based on these observations, the presence of seven superlobes in the history are confirmed for the first time and their ages are well constrained in this study, including Paleo-Superlobes Lijin (6400–5280 yr BP), Huanghua (4480–4190 yr BP), Jugezhuang (3880–3660 yr BP), Shajinzi (3070–2870 yr BP), Nigu (2780–2360 yr BP), Qikou (2140–2000 yr BP), and Kenli (1940–1780 and 1700–1650 yr BP). By tuning geomorphological events to a sedimentary proxy derived from core YDZ–3 and comparing to various paleoenvironmental changes, we proposed that winter climate dominated Holocene shifts of the Huanghe River delta on millennial timescales, while summer monsoons controlled deltaic evolution on centennial timescales.


The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Tsai-Wen Lin ◽  
Stefanie Kaboth-Bahr ◽  
Kweku Afrifa Yamoah ◽  
André Bahr ◽  
George Burr ◽  
...  

The East Asian Winter Monsoon (EAWM) is a fundamental part of the global monsoon system that affects nearly one-quarter of the world’s population. Robust paleoclimate reconstructions in East Asia are complicated by multiple sources of precipitation. These sources, such as the EAWM and typhoons, need to be disentangled in order to understand the dominant source of precipitation influencing the past and current climate. Taiwan, situated within the subtropical East Asian monsoon system, provides a unique opportunity to study monsoon and typhoon variability through time. Here we combine sediment trap data with down-core records from Cueifong Lake in northeastern Taiwan to reconstruct monsoonal rainfall fluctuations over the past 3000 years. The monthly collected grain-size data indicate that a decrease in sediment grain size reflects the strength of the EAWM. End member modelling analysis (EMMA) on sediment core and trap data reveals two dominant grain-size end-members (EMs), with the coarse EM 2 representing a robust indicator of EAWM strength. The downcore variations of EM 2 show a gradual decrease over the past 3000 years indicating a gradual strengthening of the EAWM, in agreement with other published EAWM records. This enhanced late-Holocene EAWM can be linked to the expansion of sea-ice cover in the western Arctic Ocean caused by decreased summer insolation.


2010 ◽  
Vol 30 (18) ◽  
pp. 1941-1950 ◽  
Author(s):  
Giovanni De Falco ◽  
Renato Tonielli ◽  
Gabriella Di Martino ◽  
Sara Innangi ◽  
Simone Simeone ◽  
...  

2009 ◽  
Vol 67 (3) ◽  
pp. 594-605 ◽  
Author(s):  
Victor Quintino ◽  
Rosa Freitas ◽  
Renato Mamede ◽  
Fernando Ricardo ◽  
Ana Maria Rodrigues ◽  
...  

Abstract Quintino, V., Freitas, R., Mamede, R., Ricardo, F., Rodrigues, A. M., Mota, J., Pérez-Ruzafa, Á., and Marcos, C. 2010. Remote sensing of underwater vegetation using single-beam acoustics. – ICES Journal of Marine Science, 67: 594–605. A single-beam, acoustic, ground-discrimination system (QTC VIEW, Series V) was used to study the distribution of underwater macrophytes in a shallow-water coastal system, employing frequencies of 50 and 200 kHz. The study was conducted in Mar Menor, SE Spain, where the expansion of Caulerpa prolifera has contributed to the silting up of the superficial sediments. A direct relationship was identified between algal biomass and sediment-fines content. Acoustic information on sediment grain size and data on algal biomass were obtained in muddy and sandy sediments, including vegetated and non-vegetated seabed. Non-vegetated muddy areas were created by diving and handpicking the algae. The multivariate acoustic data were analysed under the null hypotheses that there were no acoustic differences between bare seabeds with contrasting superficial sediment types or among low, medium, and high algal-biomass areas, having in mind that grain size can act as a confounding factor. Both null hypotheses were rejected, and the results showed that 200 kHz was better than 50 kHz in distinguishing cover levels of algal biomass. The relationship between the 200-kHz acoustic data and algal biomass suggests utility in modelling the latter using the former.


Sign in / Sign up

Export Citation Format

Share Document