Seasonal variations in the concentrations of Cu, Cd, Pb and Zn in Arctica islandica L. (Mollusca: Bivalvia) from Kiel Bay, Western Baltic Sea

1996 ◽  
Vol 32 (8-9) ◽  
pp. 631-635 ◽  
Author(s):  
K.M. Swaileh
2000 ◽  
Vol 203 (21) ◽  
pp. 3355-3368 ◽  
Author(s):  
K. Tschischka ◽  
D. Abele ◽  
H.O. Portner

The rates of oxygen uptake of the marine polychaete Nereis pelagica and the bivalve Arctica islandica depend on the availability of ambient oxygen. This is manifest both at the tissue level and in isolated mitochondria studied between oxygen tensions (P(O2)) of 6.3 and 47.6 kPa (47–357 mmHg). Oxyconformity was found in both Baltic Sea (Kiel Bight) and cold-adapted White Sea populations of the two species. However, mitochondria isolated from White Sea specimens of N. pelagica and A. islandica showed a two- to threefold higher aerobic capacity than mitochondria prepared from Baltic Sea specimens. We tested whether mitochondrial oxyconformity can be explained by an additional electron pathway that is directly controlled by P(O2). Mitochondrial respiration of both invertebrate species was inhibited by cyanide (KCN) and by salicylhydroxamic acid (SHAM). The overall rate of mitochondrial oxygen consumption increased at high P(O2). Phosphorylation efficiency (ADP/O ratio) decreased at elevated P(O2) (27.5-47.6 kPa, 206–357 mmHg), regardless of whether malate or succinate was used as a substrate. In contrast to the invertebrate mitochondria studied, mitochondria isolated from bovine heart, as an oxyregulating control species, did not show an elevated rate of oxygen uptake at high P(O2) in any respiratory state, with the exception of state 2 malate respiration. In addition, rates of ATP formation, respiratory control ratios (RCR) and ADP/O ratios remained virtually unchanged or even tended to decreased. In conclusion, the comparison between mitochondria from oxyregulating and oxyconforming organisms supports the existence of an alternative oxidase in addition to the classical cytochrome c oxidase. In accordance with models discussed previously, oxidative phosphorylation does not explain the rate of mitochondrial oxygen consumption during progressive activation of the alternative electron transport system. We discuss the alternative system, thought to be adaptive in confined, usually hypoxic environments, where excess oxygen can be eliminated and oxygen levels can be kept low by an increase in the rate of oxygen consumption, thereby minimizing the risk of oxidative stress.


2019 ◽  
Vol 85 (18) ◽  
Author(s):  
E. Nilsson ◽  
K. Li ◽  
J. Fridlund ◽  
S. Šulčius ◽  
C. Bunse ◽  
...  

ABSTRACT Knowledge in aquatic virology has been greatly improved by culture-independent methods, yet there is still a critical need for isolating novel phages to identify the large proportion of “unknowns” that dominate metagenomes and for detailed analyses of phage-host interactions. Here, 54 phages infecting Rheinheimera sp. strain BAL341 (Gammaproteobacteria) were isolated from Baltic Sea seawater and characterized through genome content analysis and comparative genomics. The phages showed a myovirus-like morphology and belonged to a novel genus, for which we propose the name Barbavirus. All phages had similar genome sizes and numbers of genes (80 to 84 kb; 134 to 145 genes), and based on average nucleotide identity and genome BLAST distance phylogeny, the phages were divided into five species. The phages possessed several genes involved in metabolic processes and host signaling, such as genes encoding ribonucleotide reductase and thymidylate synthase, phoH, and mazG. One species had additional metabolic genes involved in pyridine nucleotide salvage, possibly providing a fitness advantage by further increasing the phages’ replication efficiency. Recruitment of viral metagenomic reads (25 Baltic Sea viral metagenomes from 2012 to 2015) to the phage genomes showed pronounced seasonal variations, with increased relative abundances of barba phages in August and September synchronized with peaks in host abundances, as shown by 16S rRNA gene amplicon sequencing. Overall, this study provides detailed information regarding genetic diversity, phage-host interactions, and temporal dynamics of an ecologically important aquatic phage-host system. IMPORTANCE Phages are important in aquatic ecosystems as they influence their microbial hosts through lysis, gene transfer, transcriptional regulation, and expression of phage metabolic genes. Still, there is limited knowledge of how phages interact with their hosts, especially at fine scales. Here, a Rheinheimera phage-host system constituting highly similar phages infecting one host strain is presented. This relatively limited diversity has previously been seen only when smaller numbers of phages have been isolated and points toward ecological constraints affecting the Rheinheimera phage diversity. The variation of metabolic genes among the species points toward various fitness advantages, opening up possibilities for future hypothesis testing. Phage-host dynamics monitored over several years point toward recurring “kill-the-winner” oscillations and an ecological niche fulfilled by this system in the Baltic Sea. Identifying and quantifying ecological dynamics of such phage-host model systems in situ allow us to understand and study the influence of phages on aquatic ecosystems.


2010 ◽  
Vol 30 (14) ◽  
pp. 1511-1521 ◽  
Author(s):  
Karin Wesslander ◽  
Anders Omstedt ◽  
Bernd Schneider

PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0168196 ◽  
Author(s):  
Esther Rickert ◽  
Martin Wahl ◽  
Heike Link ◽  
Hannes Richter ◽  
Georg Pohnert

Sign in / Sign up

Export Citation Format

Share Document