Reply to discussion on “calculations of stress-strain curve and stress and strain distributions for an α−β Ti8Mn alloy”

1979 ◽  
Vol 40 (1) ◽  
pp. 141-142 ◽  
Author(s):  
J. Jinoch ◽  
S. Ankem ◽  
H. Margolin
2010 ◽  
Vol 638-642 ◽  
pp. 3793-3798
Author(s):  
Wolfgang H. Müller ◽  
Holger Worrack ◽  
Jens Sterthaus

The fabrication of microelectronic and micromechanical devices leads to the use of only very small amounts of matter, which can behave quite differently than the corresponding bulk. Clearly, the materials will age and it is important to gather information on the (changing) material characteristics. In particular, Young’s modulus, yield stress, and hardness are of great interest. Moreover, a complete stress-strain curve is desirable for a detailed material characterization and simulation of a component, e.g., by Finite Elements (FE). However, since the amount of matter is so small and it is the intention to describe its behavior as realistic as possible, miniature tests are used for measuring the mechanical properties. In this paper two miniature tests are presented for this purpose, a mini-uniaxial-tension-test and a nanoindenter experiment. In the tensile test the axial load is prescribed and the corresponding extension of the specimen length is recorded, both of which determines the stress-strain- curve directly. The stress-strain curves are analyzed by assuming a non-linear relationship between stress and strain of the Ramberg-Osgood type and by fitting the corresponding parameters to the experimental data (obtained for various microelectronic solders) by means of a non-linear optimization routine. For a detailed analysis of very local mechanical properties nanoindentation is used, resulting primarily in load vs. indentation-depth data. According to the procedure of Oliver and Pharr this data can be used to obtain hardness and Young’s modulus but not a complete stress-strain curve, at least not directly. In order to obtain such a stress-strain-curve, the nanoindentation experiment is combined with FE and the coefficients involved in the corresponding constitutive equations for stress and strain are obtained by means of the inverse method. The stress-strain curves from nanoindentation and tensile tests are compared for two mate-rials (aluminum and steel). Differences are explained in terms of the locality of the measurement. Finally, material properties at elevated temperature are of particular interest in order to characterize the materials even more completely. We describe the setup for hot stage nanoindentation tests in context with first results for selected materials.


2011 ◽  
Vol 694 ◽  
pp. 620-624 ◽  
Author(s):  
Wan Yusmawati Wan Yusoff ◽  
Azman Jalar ◽  
Norinsan Kamil Othman ◽  
Irman Abdul Rahman

The aim of the research was to establish the relationship between stress-strain behaviour of single die Quad Flat No lead (SDQFN) and degradation by gamma irradiation. The SDQFN was exposed to Cobalt-60 with different doses from 0.5 Gy, 1.5 Gy, 5.0 Gy, 10.0 Gy and 50.0 kGy. The three-point bending technique was used to measure the flexural stress and strain of the package behaviour relations. After exposing with gamma radiation, the result showed the decreasing in the strength of the package behaviour of irradiated SDQFN when increasing the dose of gamma irradiation. The highest gamma irradiation dose used in this work produced the highest change in stress-strain behaviour of irradiated SDQFN.


1974 ◽  
Vol 96 (2) ◽  
pp. 123-126 ◽  
Author(s):  
C. Adams ◽  
J. G. Beese

The strain-hardening characteristics of a metal have often been described by a power function which employs a work-hardening exponent, “n.” Usually the material is assumed to be rigid to the yield point and therefore the possibility of any elastic recovery is denied. The authors show that, particularly for the initial portion of a stress-strain curve, n is not a constant and therefore the curve cannot be described by one power law alone. A method is proposed for fitting equations to experimental stress-strain curves up to strain values of 0.05. The equations take into account possible elastic recovery. The equations should facilitate more accurate assessment of underload stress and strain distributions in various design problems.


2005 ◽  
Vol 20 (9) ◽  
pp. 2360-2370 ◽  
Author(s):  
Y. Xiang ◽  
X. Chen ◽  
J.J. Vlassak

The plane-strain bulge test is a powerful new technique for measuring the mechanical properties of thin films. In this technique, the stress–strain curve of a thin film is determined from the pressure-deflection behavior of a long rectangular membrane made of the film of interest. For a thin membrane in a state of plane strain, film stress and stain are distributed uniformly across the membrane width, and simple analytical formulae for stress and strain can be established. This makes the plane-strain bulge test ideal for studying the mechanical behavior of thin films in both the elastic and plastic regimes. Finite element analysis confirms that the plane-strain condition holds for rectangular membranes with aspect ratios greater than 4 and that the simple formulae are highly accurate for materials with strain-hardening exponents ranging from 0 to 0.5. The residual stress in the film mainly affects the elastic deflection of the membrane and changes the initial point of yield in the plane-strain stress–strain curve, but has little or no effect on further plastic deformation. The effect of the residual stress can be eliminated by converting the plane-strain curve into the equivalent uniaxial stress–strain relationship using effective stress and strain. As an example, the technique was applied to an electroplated Cu film. Si micromachining was used to fabricate freestanding Cu membranes. Typical experimental results for the Cu film are presented. The data analysis is in good agreement with finite element calculations.


SIMULATION ◽  
2021 ◽  
pp. 003754972110315
Author(s):  
B Girinath ◽  
N Siva Shanmugam

The present study deals with the extended version of our previous research work. In this article, for predicting the entire weld bead geometry and engineering stress–strain curve of the cold metal transfer (CMT) weldment, a MATLAB based application window (second version) is developed with certain modifications. In the first version, for predicting the entire weld bead geometry, apart from weld bead characteristics, x and y coordinates (24 from each) of the extracted points are considered. Finally, in the first version, 53 output values (five for weld bead characteristics and 48 for x and y coordinates) are predicted using both multiple regression analysis (MRA) and adaptive neuro fuzzy inference system (ANFIS) technique to get an idea related to the complete weld bead geometry without performing the actual welding process. The obtained weld bead shapes using both the techniques are compared with the experimentally obtained bead shapes. Based on the results obtained from the first version and the knowledge acquired from literature, the complete shape of weld bead obtained using ANFIS is in good agreement with the experimentally obtained weld bead shape. This motivated us to adopt a hybrid technique known as ANFIS (combined artificial neural network and fuzzy features) alone in this paper for predicting the weld bead shape and engineering stress–strain curve of the welded joint. In the present study, an attempt is made to evaluate the accuracy of the prediction when the number of trials is reduced to half and increasing the number of data points from the macrograph to twice. Complete weld bead geometry and the engineering stress–strain curves were predicted against the input welding parameters (welding current and welding speed), fed by the user in the MATLAB application window. Finally, the entire weld bead geometries were predicted by both the first and the second version are compared and validated with the experimentally obtained weld bead shapes. The similar procedure was followed for predicting the engineering stress–strain curve to compare with experimental outcomes.


Sign in / Sign up

Export Citation Format

Share Document