Plane-strain Bulge Test for Thin Films

2005 ◽  
Vol 20 (9) ◽  
pp. 2360-2370 ◽  
Author(s):  
Y. Xiang ◽  
X. Chen ◽  
J.J. Vlassak

The plane-strain bulge test is a powerful new technique for measuring the mechanical properties of thin films. In this technique, the stress–strain curve of a thin film is determined from the pressure-deflection behavior of a long rectangular membrane made of the film of interest. For a thin membrane in a state of plane strain, film stress and stain are distributed uniformly across the membrane width, and simple analytical formulae for stress and strain can be established. This makes the plane-strain bulge test ideal for studying the mechanical behavior of thin films in both the elastic and plastic regimes. Finite element analysis confirms that the plane-strain condition holds for rectangular membranes with aspect ratios greater than 4 and that the simple formulae are highly accurate for materials with strain-hardening exponents ranging from 0 to 0.5. The residual stress in the film mainly affects the elastic deflection of the membrane and changes the initial point of yield in the plane-strain stress–strain curve, but has little or no effect on further plastic deformation. The effect of the residual stress can be eliminated by converting the plane-strain curve into the equivalent uniaxial stress–strain relationship using effective stress and strain. As an example, the technique was applied to an electroplated Cu film. Si micromachining was used to fabricate freestanding Cu membranes. Typical experimental results for the Cu film are presented. The data analysis is in good agreement with finite element calculations.

2009 ◽  
Vol 37 (2) ◽  
pp. 159-174
Author(s):  
O. Ifedi ◽  
Q. M. Li ◽  
Y. B. Lu

In plasticity theory, the effective stress–strain curve of a metal is independent of the loading path. The simplest loading path to obtain the effective stress–strain curve is a uniaxial tensile test. In order to demonstrate in a plasticity laboratory that the stress–strain curve is independent of the loading path, the hydrostatic bulge test has been used to provide a balanced biaxial tensile stress state. In our plasticity laboratory we compared several different theories for the hydrostatic bulge test for the determination of the effective stress–strain curve for two representative metals, brass and aluminium alloy. Finite element analysis (FEA) was performed based on the uniaxial tension test data. It was shown that the effective stress–strain curve obtained from the biaxial tensile test (hydrostatic bulge test) had a good correlation with that obtained in the uniaxial tensile test and agreed well with the analytical and FEA results. This paper may be used to support an experimental and numerical laboratory in teaching the concepts of effective stress and strain in plasticity theory.


Author(s):  
Lanre Odina ◽  
Robert J. Conder

When subjected to permanent ground deformations, buried pipelines may fail by local buckling (wrinkling under compression) or by tensile rupture. The initial assessment of the effects of predicted seismic fault movements on the buried pipeline is performed using analytical approaches by Newmark-Hall and Kennedy et al, which is restricted to cases when the pipeline is put into tension. Further analysis is then undertaken using finite element methods to assess the elasto-plastic response of the pipeline response to the fault movements, particularly the compressive strain limits. The finite element model is set up to account for the geometric and material non-linear parameters. The pipe material behaviour is generally assumed to have a smooth strain hardening (roundhouse) post-yield behaviour and defined using the Ramberg-Osgood stressstrain curve definition with the plasticity modelled using incremental theory with a von Mises yield surface, associated flow rule and isotropic hardening. However, material tests on seamless pipes (X-grade) show that the stress-strain curve typically displays a Lu¨der’s plateau behaviour (yield point elongation) in the post-yield state. The Lu¨der’s plateau curve is considered conservative for pipeline design and could have a significant impact on strain-based integrity assessment. This paper compares the pipeline response from a roundhouse stress-strain curve with that obtained from a pipe material exhibiting Lu¨der’s plateau behaviour and also examines the implications of a Lu¨der’s plateau for pipeline structural integrity assessments.


2005 ◽  
Vol 495-497 ◽  
pp. 69-76 ◽  
Author(s):  
X.B. Wang

Peak strength, mechanical behavior, and shear band (SB) of anisotropic jointed rock (JR) were modeled by Fast Lagrangian Analysis of Continua (FLAC). The failure criterion of rock was a composite Mohr-Coulomb criterion with tension cut-off and the post-peak constitutive relation was linear strain-softening. An inclined joint was treated as square elements of ideal plastic material beyond the peak strength. A FISH function was written to find automatically elements in the joint. For the lower or higher joint inclination (JI), the higher peak strength and more apparent strain-softening behavior are observed; the failure of JR is due to the slip along the joint and the new generated SBs initiated at joint’s two ends. For the lower JI, the slope of softening branch of stress-strain curve is not concerned with JI since the new and longer SBs’s inclination is not dependent on JI, as can be qualitatively explained by previous analytical solution of post-peak slope of stress-strain curve for rock specimen subjected to shear failure in uniaxial compression based on gradient-dependent plasticity. For the higher JI, the post-peak stress-strain curve becomes steeper as JI increases since the contribution of the new SBs undergoing strain-softening behavior to axial strain of JR increases with JI. For the moderate JI, the lower strength and ideal plastic behavior beyond the elastic stage are found, reflecting that the inclined joint governs the deformation of JR. The present numerical prediction on anisotropic peak strength in plane strain compression qualitatively agrees with triaxial experimental tests of many kinds of rocks. Comparison of the present numerical prediction on JI corresponding to the minimum peak strength of JR and the oversimplified theoretical result by Jaeger shows that Jaeger’s formula has overestimated the value of JI.


Sign in / Sign up

Export Citation Format

Share Document