Probabilistic seismic safety study of an existing nuclear power plant

1980 ◽  
Vol 59 (2) ◽  
pp. 315-338 ◽  
Author(s):  
R.P. Kennedy ◽  
C.A. Cornell ◽  
R.D. Campbell ◽  
S. Kaplan ◽  
H.F. Perla
2021 ◽  
Author(s):  
Hoseon Choi ◽  
Seung Gyu Hyun

<p>According to strict criteria step by step for site selection, design, construction and operation, the seismic safety of nuclear power plant (NPP) sites in South Korea are secured by considering design basis earthquake (DBE) level capable of withstanding the maximum ground motions that can occur on the site. Therefore, it is intended to summarize DBE level and its evaluation details for NPP sites in several countries.</p><p>Similar but different terms are used for DBE from country to country, i.e. safe shutdown earthquake (SSE), design earthquake (DE), SL2, Ss, and maximum calculated earthquake (MCE). They may differ when applied to actual seismic design process, and only refer to approximate comparisons. This script used DBE as a representative term, and DBE level was based on horizontal values.</p><p>The DBE level of NPP sites depends on seismic activity of the area. Japan and Western United States, where earthquakes occur more frequently than South Korea, have high DBE values. The DBE level of NPP sites in South Korea has been confirmed to be similar or higher compared to that of Central and Eastern Unites Sates and Europe, which have similar seismic activity.</p>


2014 ◽  
Vol 541-542 ◽  
pp. 916-921 ◽  
Author(s):  
Li Xu ◽  
Ru Chao Deng ◽  
Chu Xu ◽  
Di Zhang ◽  
Chen Xing Sheng

For evaluate the risk of civil marine nuclear power plant, through the searching related standards for ship, external environmental parameters that the nuclear ship should be suited was found. Based on the characteristics of power plant of civil nuclear-powered ship, the hierarchy system of primary loop system was established and corresponding indicator marking criteria were formulated for the risk assessment. The result shows that the Reactor Safety Injection System (RIS), the Reactor Boron and the Water Supply System (REA), the Control Rods and the Hull of Fuel Canning are the key risk factors in the primary loop system. Finally, the comprehensive evaluation was carried out for collision, stranding and swing of multi-degree of freedom, and put forward relative countermeasures to cope with the possible risks based on the comprehensive evaluation and combined with the literatures.


Author(s):  
Juan Luo ◽  
Jiacheng Luo ◽  
Lei Sun

Nuclear class equipment should be assessed for seismic safety before they are used in nuclear power plant. According to nuclear safety codes and regulations, all seismic category I equipments shall be designed enduring safety shutdown earthquake (SSE). That is, the stress evaluation needs to be accomplished for those structures. For some components, the deformation evaluation needs to be performed as well to assure the function integrity of the equipment. In this paper, the seismic analysis for an explosion-proof valve used in nuclear power plant, which exactly belongs to seismic category I equipment, has been conducted based on finite element method. The natural frequency, vibration mode and seismic response of the structure have been obtained through calculation, and the stress and deformation under the combined loadings of gravity, internal pressure, blast and seismic load have been evaluated according to ASME AG-1. The bolts of the structure have been qualified according to ASME III-NF as well. The results show that the design of the explosion-proof valve is in compliance with the requirement of corresponding nuclear safety standards.


2018 ◽  
Vol 12 (04) ◽  
pp. 1841011
Author(s):  
Susumu Nakamura ◽  
Ikumasa Yoshida ◽  
Masuhiro Beppu

As a result of the disaster of nuclear power plant caused by the 2011 off the pacific coast of Tohoku Earthquake, establishment of a method to estimate the influence of slopes on the seismic safety of nuclear facilities has become necessary. The creation of such a method can yield important information regarding potential risk as well as risk management regarding seismic safety. The existing guidelines used to evaluate landslide risk provide guidance for landslide zoning as well as how landslide risk can be reduced and avoided. According to these guidelines, either people or houses are typically used as targets of risk evaluation. Particularly, for a specific slope, it is necessary to evaluate the damage of the potentially affected structures quantitatively and systematically. Therefore, the definition and basic assessment procedure of three limit states (stability limit, reachable limit and damage limit) are herein described. Furthermore, an evaluation case for a slope model describes the influence of slope collapse due to an earthquake. In this case, the fragility curves, as well as the occurrence probability for each limit state are described and an evaluation example is provided. Regarding new ideas and methods to evaluate the conditional reachable probability and the conditional damage probability as well as a method to evaluate the total probability of all three limit states are proposed. From the results obtained in our example case, it is found that systematical assessment of the risk information of facilities damaged due to slope collapse is useful, and is made possible via numerical analysis.


Author(s):  
Zhao Wang ◽  
Jianfeng Yang ◽  
Weijin Wang ◽  
Bingchen Feng ◽  
Xiaoming Zhang

For seismic safety evaluation method of nuclear power plant, nuclear power plant seismic margin analysis (SMA) and nuclear power plant seismic probability safety assessment (SPSA) are the most widely used methods. SMA is a method base on deterministic theory. Seismic capacity is valued by high confidence and low failure probability (HCLPF). Through the seismic failure logic of structure, system and components (SSCs), the method can calculated the HCLPF of the whole nuclear power plant, and verify whether the plant can withstand a SSE earthquake test. The SPSA method is the most widely used seismic safety assessment method based on probability theory. Through the analysis and quantification of earthquake accident sequence, a SPSA project can fully identify the seismic risk of nuclear power plant and seismic weak points. Also SPSA can guide the nuclear power plant seismic safety improvement. No matter which method is used to analyze the seismic safety of nuclear power plant, it is necessary to analyze and calculate the seismic fragility of the SSCs. SMA method needs to use a large number of HCLPF data, and seismic fragility analysis and calculation results is one of the main sources of HCLPF data. The SPSA method needs to use seismic fragility data of SSCs which are list in the seismic equipment list (SEL) as input data, so that it can support the quantitative analysis of the risk assessment model. Because of the existence of uncertainty, the seismic fragilities cannot be put to directly logic operation. This brings great difficulty to the using of fragility data. In the paper, the logic operation method and the uncertainty analysis method of seismic fragility is studied, and the calculation program is compiled based on the Monte Carlo method. In this paper, a program is used to calculate the case. The performance of the program is verified and the uncertainty of the system fragility is analyzed. Due to the existence of uncertainty, the fragility cannot put into the numerical calculation directly. In this paper, the calculation method of the failure frequency of components is studied, and the corresponding program is developed by using Monte Carlo method. In this paper, a program is used to calculate the failure frequency of the components under different ground motion levels, and the uncertainty of the failure frequency is also studied.


Author(s):  
Leilei Xu ◽  
Xiaoling Zhao ◽  
Zhaohua Li

Seismic Margin Assessment (SMA) is one of the methods for seismic safety assessment of nuclear power plants. The United States in the 1990s requires all running nuclear power plants to carry out an Individual Plant Examination of External Events (IPEEE), in the completion of the IPEEE of 110 units, 65 units using the seismic margin assessment method. The commercial nuclear power industry of China started late, although the Shanghai Nuclear Engineering Research and Design Institute in the 1980s to carry out seismic safety evaluation of relevant research. After the Fukushima nuclear accident, the National Nuclear Safety Administration requires all nuclear power plants in operation to carry out Seismic Margin Assessment. In view of the above background, the Shanghai Nuclear Engineering Research and Design Institute and Qinshan Nuclear Power Co., Ltd. on the Qinshan nuclear power plant to carry out the seismic margin assessment. Through the assessment, some weak links were found in the Qinshan nuclear power plant in some aspects. The Qinshan nuclear power plant in the implementation of the targeted improvements, the power plant’s seismic capacity has been effectively improved.


1990 ◽  
Vol 123 (2-3) ◽  
pp. 129-141
Author(s):  
Robert T. Sewell ◽  
Robin K. McGuire ◽  
J.Carl Stepp ◽  
Gabriel R. Toro ◽  
C.Allin Cornell

Sign in / Sign up

Export Citation Format

Share Document