Composite films of nylon-6/polypyrrole: thermal behaviour, mechanical properties and electrical conduction

Polymer ◽  
1993 ◽  
Vol 34 (5) ◽  
pp. 986-989 ◽  
Author(s):  
D.S Kelkar ◽  
N.V Bhat
2021 ◽  
Vol 10 (4) ◽  
pp. 2742-2749

Polypyrrole conducting polymers have become significant in different biomedical applications, but unfortunately, they are insoluble with poor mechanical properties. A natural soluble polymer (Chitosan) can be used to improve such properties. Chitosan/polypyrrole composites were synthesized by dispersing the different doped amounts of polypyrrole into the chitosan matrix. The physical properties of the synthesized composite films were investigated using different techniques. The results obtained from FTIR, XRD show the electrostatic interaction between chitosan and polypyrrole. UV/Vis analysis implies that the optical band gap of composite films decreases with increasing polypyrrole concentration, which can be assumed to increase the electrical conduction in the composite films.


1989 ◽  
Vol 24 (6) ◽  
pp. 2245-2249 ◽  
Author(s):  
Masaki Shimomura ◽  
Yoji Maeda ◽  
Yoshikazu Tanabe

2021 ◽  
pp. 009524432110290
Author(s):  
Mukaddes Sevval Cetin ◽  
Ozan Toprakci ◽  
Omer Suat Taskin ◽  
Abdullah Aksu ◽  
Hatice Aylin Karahan Toprakci

This study focuses on the fabrication and characterization of vermiculite-filled flexible polymer composites. Exfoliated vermiculite was incorporated into triblock thermoplastic elastomer copolymer, styrene- b-(ethylene- co-butylene)- b-styrene (SEBS), at various levels from 1 to 15 wt% by a high shear mixer. The composite films were obtained by the combination of solvent casting and compression molding. The morphological, structural, thermal, and mechanical properties and contact angle of the composites were determined. Some micro-morphological differences were observed between the samples and the difference was assumed to be caused by high shear mixing and filler concentration. High shear mixing was found effective in terms of the detachment of vermiculite layers at all concentrations. However, at low filler loading, that behavior was more obvious. At 1 wt% filler concentration, mechanical properties increased that was probably caused by good filler-matrix interaction stemmed from smaller particle size. At higher vermiculite concentrations, fillers found to show agglomerations that led to a decrease in mechanical strength and strain at break. Elastic and secant modulus showed an increasing trend. Contact angle measurements were carried out to determine the oleophilic character of the samples. An increase in the vermiculite content resulted in higher oleophilic character and the lowest contact angle was obtained at 15 wt% VMT loading. In addition to these, thermal stability, thermal dimensional stability and flame retardancy were improved by the incorporation of VMT. 15 wt% vermiculite-filled sample showed the best performance in terms of thermal stability and flame retardancy.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 329
Author(s):  
Tan Yi ◽  
Minghui Qi ◽  
Qi Mo ◽  
Lijie Huang ◽  
Hanyu Zhao ◽  
...  

Composite films of polybutylene adipate terephthalate (PBAT) were prepared by adding thermoplastic starch (TPS) (TPS/PBAT) and nano-zinc oxide (nano-ZnO) (TPS/PBAT/nano-ZnO). The changes of surface morphology, thermal properties, crystal types and functional groups of starch during plasticization were analyzed by scanning electron microscopy, synchronous thermal analysis, X-ray diffraction, infrared spectrometry, mechanical property tests, and contact Angle and transmittance tests. The relationship between the addition of TPS and the tensile strength, transmittance, contact angle, water absorption, and water vapor barrier of the composite film, and the influence of nano-ZnO on the mechanical properties and contact angle of the 10% TPS/PBAT composite film. Experimental results show that, after plasticizing, the crystalline form of starch changed from A-type to V-type, the functional group changed and the lipophilicity increased; the increase of TPS content, the light transmittance and mechanical properties of the composite membrane decreased, while the water vapor transmittance and water absorption increased. The mechanical properties of the composite can be significantly improved by adding nano-ZnO at a lower concentration (optimum content is 1 wt%).


1979 ◽  
Vol 18 (5) ◽  
pp. 995-996 ◽  
Author(s):  
Shuhei Nakamura ◽  
Goro Sawa ◽  
Masayuki Ieda

Polymer ◽  
1998 ◽  
Vol 39 (2) ◽  
pp. 485-489 ◽  
Author(s):  
Weon Byun Sung ◽  
Soon Im Seung

Sign in / Sign up

Export Citation Format

Share Document