Phase behaviour of blends of nylon 6 and lightly sulfonated polystyrene ionomers

Polymer ◽  
1994 ◽  
Vol 35 (9) ◽  
pp. 1963-1969 ◽  
Author(s):  
R.A Weiss ◽  
Xinya Lu
Polymer ◽  
1996 ◽  
Vol 37 (7) ◽  
pp. 1117-1122 ◽  
Author(s):  
Kilwon Cho ◽  
Hyun Kyoung Jeon ◽  
Chan Eon Park ◽  
Jungahn Kim ◽  
Kwang Ung Kim

1993 ◽  
Vol 26 (24) ◽  
pp. 6583-6588 ◽  
Author(s):  
T. K. Kwei ◽  
Y. K. Dai ◽  
Xinya Lu ◽  
R. A. Weiss

Author(s):  
A. C. Reimschuessel ◽  
V. Kramer

Staining techniques can be used for either the identification of different polymers or for the differentiation of specific morphological domains within a given polymer. To reveal morphological features in nylon 6, we choose a technique based upon diffusion of the staining agent into accessible regions of the polymer.When a crystallizable polymer - such as nylon 6 - is cooled from the melt, lamellae form by chainfolding of the crystallizing long chain macromolecules. The regions between adjacent lamellae represent the less ordered amorphous domains into which stain can diffuse. In this process the lamellae will be “outlined” by the dense stain, giving rise to contrast comparable to that obtained by “negative” staining techniques.If the cooling of the polymer melt proceeds relatively slowly - as in molding operations - the lamellae are usually arranged in a radial manner. This morphology is referred to as spherulitic.


Author(s):  
D. Chrétien ◽  
D. Job ◽  
R.H. Wade

Microtubules are filamentary structures found in the cytoplasm of eukaryotic cells, where, together with actin and intermediate filaments, they form the components of the cytoskeleton. They have many functions and show various levels of structural complexity as witnessed by the singlet, doublet and triplet structures involved in the architecture of centrioles, basal bodies, cilia and flagella. The accepted microtubule model consists of a 25 nm diameter hollow tube with a wall made up of 13 paraxial protofilaments (pf). Each pf is a string of aligned tubulin dimers. Some results have suggested that the pfs follow a superhelix. To understand how microtubules function in the cell an accurate model of the surface lattice is one of the requirements. For example the 9x2 architecture of the axoneme will depend on the organisation of its component microtubules. We should also note that microtubules with different numbers of pfs have been observed in thin sections of cellular and of in-vitro material. An outstanding question is how does the surface lattice adjust to these different pf numbers?We have been using cryo-electron microscopy of frozen-hydrated samples to study in-vitro assembled microtubules. The experimental conditions are described in detail in this reference. The results obtained in conjunction with thin sections of similar specimens and with axoneme outer doublet fragments have already allowed us to characterise the image contrast of 13, 14 and 15 pf microtubules on the basis of the measured image widths, of the the image contrast symmetry and of the amplitude and phase behaviour along the equator in the computed Fourier transforms. The contrast variations along individual microtubule images can be interpreted in terms of the geometry of the microtubule surface lattice. We can extend these results and make some reasonable predictions about the probable surface lattices in the case of other pf numbers, see Table 1. Figure 1 shows observed images with which these predictions can be compared.


1979 ◽  
Vol 76 ◽  
pp. 501-506 ◽  
Author(s):  
Shawky Boutros ◽  
Hanna A. Rizk ◽  
Adly Hanna ◽  
Melad Gerges
Keyword(s):  
Nylon 6 ◽  

1997 ◽  
Vol 503 ◽  
Author(s):  
H. Jiang ◽  
M. K. Davis ◽  
R. K. Eby ◽  
P. Arsenovic

ABSTRACTPhysical properties and structural parameters have been measured for ropes of nylon 6 as a function of the number of use operations. The fractional content of the α crystal form, sound velocity, birefringence, tensile strength and length all increase systematically and significantly with increasing the number of use operations. The fractional content of the γ crystal form and fiber diameter decrease with use. These trends indicate that the measurement of such properties and structural parameters, especially the length, provide a possible basis for establishing a reliable, rapid, and convenient nondestructive characterization method to predict the remaining service life of nylon 6 ropes.


2020 ◽  
Vol 35 (2) ◽  
pp. 169-183 ◽  
Author(s):  
P. Hadimani ◽  
H. N. Narasimha Murthy ◽  
R. Mudbidre
Keyword(s):  
Nylon 6 ◽  

2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Maria Tomoaia-Cotisel ◽  
Aurora Mocanu

The phase behaviour and surface structure of dipalmitoyl phosphatidyl choline (DPPC) monolayers at the air/water interface, in the absence and the presence of procaine, have been investigated by Langmuir-Blodgett (LB) technique and atomic force microscopy. The LB films were transferred on mica, at a controlled surface pressure, characteristic for the expanded liquid to condensed liquid phase transition of pure DPPC monolayers. The results indicate that procaine penetrates into and specifically interacts with phospholipid monolayers stabilizing the lipid membrane interface.


Sign in / Sign up

Export Citation Format

Share Document