Recent Dynamics of Subarctic Dunes as Determined by Tree-Ring Analysis of White Spruce, Hudson Bay, Québec

1992 ◽  
Vol 38 (3) ◽  
pp. 316-330 ◽  
Author(s):  
Pierre Marin ◽  
Louise Filion

AbstractThe radial-growth patterns of white spruce were studied on a number of trees growing in subarctic dunes along the eastern coast of Hudson Bay to calculate the rates of accumulation, erosion, and migration of cold-climate sand dunes. The average rate of sand accumulation in sheltered dunes (forest sites) was 2.5 to 3.3 cm/yr, which is two to three times lower than in highly exposed dunes with a rate of sedimentation of 7.65 cm/yr. The average erosion rate was 1.4–1.7 cm/yr, about two times lower than the accumulation rate. The migration rate of sheltered dunes was 18 to 30 cm/yr, three to five times lower than for an exposed dune which advanced at a speed of 74 cm/yr. This migration rate established for highly exposed dunes in the Subarctic with tree-ring methods is about 10 times lower than that established for a barchan in the Sahara with other methods.

The Holocene ◽  
2018 ◽  
Vol 28 (6) ◽  
pp. 1011-1022 ◽  
Author(s):  
Bing Song ◽  
Sangheon Yi ◽  
Wook-Hyun Nahm ◽  
Jin-Young Lee ◽  
Limi Mao ◽  
...  

To understand the early- to mid-Holocene vegetation and climate dynamics on the eastern coast of the Yellow Sea, we obtained a sedimentary core with high-resolution accelerator mass spectrometry (AMS) carbon 14 (14C) data from the Gunsan coast in South Korea. The palynological analysis demonstrated that the riverine wetland meadow from 12.1 to 9.8 cal. kyr BP changed to temperate deciduous broad-leaved forest in 9.8–2.8 cal. kyr BP. In addition, the cold climate from 12.1 to 9.8 cal. kyr BP became warmer from 8.5 to 7.3 cal. kyr BP. This was followed by another relatively cold period from 7.3 to 2.8 cal. kyr BP. The temperature change was mainly in response to solar factors. However, there are two relatively humid periods from 12.1 to 9.8 and 8.5 to 7.3 cal. kyr BP, which arose for different reasons. The earlier humid period resulted from strong westerlies and a rapidly rising sea level. The later humid period was produced mainly by the strong East Asian summer monsoon (EASM) and may also be linked to La Niña–like activity. The cold ‘Younger Dryas’ event from 12.0 to 11.4 cal. kyr BP recorded in this study may have been produced by a North Atlantic meltwater pulse. This would have reduced temperatures that were already low because of weak insolation, and the strong winter monsoons would have increased the precipitation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Georgios Skiadaresis ◽  
Bernhard Muigg ◽  
Willy Tegel

Tree-ring widths (TRW) of historical and archeological wood provide crucial proxies, frequently used for high-resolution multi-millennial paleoclimate reconstructions. Former growing conditions of the utilized trees, however, are largely unknown. Potential influences of historical forest management practices on climatic information, derived from TRW variability need to be considered but have not been assessed so far. Here, we examined the suitability of TRW series from traditionally managed oak forests (Quercus spp.) for climate reconstructions. We compared the climate signal in TRW chronologies of trees originating from high forests and coppice-with-standards (CWS) forests, a silvicultural management practice widely used in Europe for most of the common era. We expected a less distinct climate control in CWS due to management-induced growth patterns, yet an improved climate-growth relationship with TRW data from conventionally managed high forests. CWS tree rings showed considerably weaker correlations with hydroclimatic variables than non-CWS trees. The greatest potential for hydroclimate reconstructions was found for a large dataset containing both CWS and non-CWS trees, randomly collected from lumber yards, resembling the randomness in sources of historical material. Our results imply that growth patterns induced by management interventions can dampen climate signals in TRW chronologies. However, their impact can be minimized in well replicated, randomly sampled regional chronologies.


1995 ◽  
Vol 83 (6) ◽  
pp. 929 ◽  
Author(s):  
Kateri Lescop-Sinclair ◽  
Serge Payette

Author(s):  
Glenn Patrick Juday ◽  
Valerie Barber

The two most important life functions that organisms carry out to persist in the environment are reproduction and growth. In this chapter we examine the role of climate and climate variability as controlling factors in the growth of one of the most important and productive of the North American boreal forest tree species, white spruce (Picea glauca [Moench] Voss). Because the relationship between climate and tree growth is so close, tree-ring properties have been used successfully for many years as a proxy to reconstruct past climates. Our recent reconstruction of nineteenth- century summer temperatures at Fairbanks based on white spruce tree-ring characteristics (Barber et al. in press) reveals a fundamental pattern of quasi-decadal climate variability. The values in this reconstruction of nineteenth-century Fairbanks summer temperatures are surprisingly warm compared to values in much of the published paleoclimatic literature for boreal North America. In this chapter we compare our temperature reconstructions with ring-width records in northern and south-central Alaska to see whether tree-growth signals in the nineteenth century in those regions are consistent with tree-ring characteristics in and near Bonanza Creek (BNZ) LTER (25 km southwest of Fairbanks) that suggest warm temperatures during the mid-nineteenth century. We also present a conceptual model of key limiting events in white spruce reproduction and compare it to a 39-year record of seed fall at BNZ. Finally, we derive a radial growth pattern index from white spruce at nine stands across Interior Alaska that matches recent major seed crop events in the BNZ monitoring period, and we identify dates after 1800 when major seed crops of white spruce, which are infrequent, may have been produced. The boreal region is characterized by a broad zone of forest with a continuous distribution across Eurasia and North America, amounting to about 17% of the earth’s land surface area (Bonan et al. 1992). The boreal region is often conceived of as a zone of relatively homogenous climate, but in fact a surprising diversity of climates are present. During the long days of summer, continental interior locations under persistent high-pressure systems experience hot weather that can promote extensive forest fires frequently exceeding 100 kilohectares (K ha). Summer daily maximum temperatures are cooled to a considerable degree in maritime portions of the boreal region affected by air masses that originate over the North Atlantic, North Pacific, or Arctic Oceans.


IAWA Journal ◽  
2019 ◽  
Vol 40 (2) ◽  
pp. 331-S5 ◽  
Author(s):  
C. Alvites ◽  
G. Battipaglia ◽  
G. Santopuoli ◽  
H. Hampel ◽  
R.F. Vázquez ◽  
...  

ABSTRACTRelict tree species in the Andean mountains are important sources of information about climate variability and climate change. This study deals with dendroclimatology and growth patterns in Polylepis reticulata Hieron., growing at high elevation (mean of 4000 m a.s.l.) in three sites of the Ecuadorian Andes. The aims of the research were: (i) characterizing tree-ring boundaries; (ii) describing tree-ring patterns of the study sites; (iii) investigating the relationships between climate and radial tree growth; and (iv) determining the spatial correlation between seasonal climatic factors and tree-ring width of P. reticulata. Tree rings were characterized by semi-ring porosity and slight differences in fibre wall thickness between latewood and subsequent earlywood. In all sampling sites, tree rings in heartwood were more clearly visible than in sapwood. Tree-ring width was more related to temperature than to precipitation, with growth being also affected by site conditions and stand structure, as well as other local factors. No significant relationships were found between tree-ring chronologies of P. reticulata and El Niño-Southern Oscillation (ENSO) and Vapour Pressure Deficit indices. The study highlights that there is not a clear driving climate factor for radial growth of P. reticulata. Additional research is needed to study growth dynamics of this species and the impacts of local environmental variables.


2015 ◽  
Vol 12 (20) ◽  
pp. 5899-5914 ◽  
Author(s):  
B. A. Hook ◽  
J. Halfar ◽  
Z. Gedalof ◽  
J. Bollmann ◽  
D. J. Schulze

Abstract. The recent discovery of well-preserved mummified wood buried within a subarctic kimberlite diamond mine prompted a paleoclimatic study of the early Eocene "hothouse" (ca. 53.3 Ma). At the time of kimberlite eruption, the Subarctic was warm and humid producing a temperate rainforest biome well north of the Arctic Circle. Previous studies have estimated that mean annual temperatures in this region were 4–20 °C in the early Eocene, using a variety of proxies including leaf margin analysis and stable isotopes (δ13C and δ18O) of fossil cellulose. Here, we examine stable isotopes of tree-ring cellulose at subannual- to annual-scale resolution, using the oldest viable cellulose found to date. We use mechanistic models and transfer functions to estimate earliest Eocene temperatures using mummified cellulose, which was well preserved in the kimberlite. Multiple samples of Piceoxylon wood within the kimberlite were crossdated by tree-ring width. Multiple proxies are used in combination to tease apart likely environmental factors influencing the tree physiology and growth in the unique extinct ecosystem of the Polar rainforest. Calculations of interannual variation in temperature over a multidecadal time-slice in the early Eocene are presented, with a mean annual temperature (MAT) estimate of 11.4 °C (1 σ = 1.8 °C) based on δ18O, which is 16 °C warmer than the current MAT of the area (−4.6 °C). Early Eocene atmospheric δ13C (δ13Catm) estimates were −5.5 (±0.7) ‰. Isotopic discrimination (Δ) and leaf intercellular pCO2 ratio (ci/ca) were similar to modern values (Δ = 18.7 ± 0.8 ‰; ci/ca = 0.63 ± 0.03 %), but intrinsic water use efficiency (Early Eocene iWUE = 211 ± 20 μmol mol−1) was over twice the level found in modern high-latitude trees. Dual-isotope spectral analysis suggests that multidecadal climate cycles somewhat similar to the modern Pacific Decadal Oscillation likely drove temperature and cloudiness trends on 20–30-year timescales, influencing photosynthetic productivity and tree growth patterns.


2015 ◽  
Vol 52 (5) ◽  
pp. 322-337 ◽  
Author(s):  
Maxime Jolivel ◽  
Michel Allard ◽  
Guillaume St-Onge

1995 ◽  
Vol 25 (10) ◽  
pp. 1684-1696 ◽  
Author(s):  
Thomas Kitzberger ◽  
Thomas T. Veblen ◽  
Ricardo Villalba

In northern Patagonia, Argentina, we examined the influences of climatic variation and inter-site variation in substrate stability on the dendroecological effects of earthquakes. In association with the great earthquake in 1960 centered off the coast of nearby Valdivia, Chile, extensive tree mortality occurred in northern Patagonia in Nothofagusdombeyi–Austrocedruschilensis stands on unstable debris fans. To examine the effects of the 1960 and earlier earthquakes on tree growth, we developed tree-ring chronologies from samples of the surviving A. chilensis on unstable debris fan sites and at adjacent nonfan sites of more stable substrates. For controlling the effects of regional climatic variation, we also produced a tree-ring chronology from this species in a more distant and undisturbed stand. Strong variations in tree-growth patterns on fan sites were associated with the historically documented major seismic events of south central Chile that occurred in 1737, 1751, 1837, and 1960. Tree-ring chronologies from nonfan sites (i.e., sites of greater substrate stability) showed much less response to these earthquakes. On the fan sites, strong growth suppressions were associated with the former three earthquakes, whereas strong releases followed the 1960 earthquake. The difference in response is explained by the occurrence of the 1960 earthquake during a period of drought, which in combination with the violent shaking of the ground, resulted in extensive tree mortality followed by growth releases of the survivors. However, severe droughts in the absence of earthquakes also can produce tree mortality and subsequent release of the survivors. Consequently, the synergistic effects of climatic variation and earthquake events must be carefully considered in developing records of both climatic variation and earthquakes.


Sign in / Sign up

Export Citation Format

Share Document