Effect of surface properties on the narrow to broadband spectral relationship in clear sky satellite observations

1986 ◽  
Vol 20 (3) ◽  
pp. 267-282 ◽  
Author(s):  
R.T Pinker ◽  
J.A Ewing
2021 ◽  
Vol 155 (3) ◽  
pp. 034701
Author(s):  
Emily Y. Lin ◽  
Amalie L. Frischknecht ◽  
Karen I. Winey ◽  
Robert A. Riggleman

2021 ◽  
Vol 13 (5) ◽  
pp. 1042
Author(s):  
Jung-Hyun Yang ◽  
Jung-Moon Yoo ◽  
Yong-Sang Choi

The detection of low stratus and fog (LSF) at dawn remains limited because of their optical features and weak solar radiation. LSF could be better identified by simultaneous observations of two geostationary satellites from different viewing angles. The present study developed an advanced dual-satellite method (DSM) using FY-4A and Himawari-8 for LSF detection at dawn in terms of probability indices. Optimal thresholds for identifying the LSF from the spectral tests in DSM were determined by the comparison with ground observations of fog and clear sky in/around Japan between April to November of 2018. Then the validation of these thresholds was carried out for the same months of 2019. The DSM essentially used two traditional single-satellite tests for daytime such as the 0.65-μm reflectance (R0.65), and the brightness temperature difference between 3.7 μm and 11 μm (BTD3.7-11); in addition to four more tests such as Himawari-8 R0.65 and BTD13.5-8.5, the dual-satellite stereoscopic difference in BTD3.7-11 (ΔBTD3.7-11), and that in the Normalized Difference Snow Index (ΔNDSI). The four were found to show very high skill scores (POD: 0.82 ± 0.04; FAR, 0.10 ± 0.04). The radiative transfer simulation supported optical characteristics of LSF in observations. The LSF probability indices (average POD: 0.83, FAR: 0.10) were constructed by a statistical combination of the four to derive the five-class probability values of LSF occurrence in a grid. The indices provided more details and useful results in LSF spatial distribution, compared to the single satellite observations (i.e., R0.65 and/or BTD3.7-11) of either LSF or no LSF. The present DSM could apply for remote sensing of environmental phenomena if the stereoscopic viewing angle between two satellites is appropriate.


2010 ◽  
Vol 636-637 ◽  
pp. 676-681 ◽  
Author(s):  
M. Omastová ◽  
M. Mičušík ◽  
Pavol Fedorko ◽  
M.M. Chehimi ◽  
J. Pionteck

The surface of multiwall carbon nanotubes (CNT) was modified by non-covalent approach. Various types of surfactants, an anionic surfactant - dodecylbenzenesulfonic acid, an cationic surfactant - cetyltrimethylammonium bromide and their combination with different molar ratios were used for modification. Different power of ultrasound, 64 or 400 W was used to evaluate its influence on the properties of prepared composites. The electrical conductivities of unmodified CNT, particles treated by ultrasound, and CNT modified with surfactants were measured. The surface properties of modified particles were determined by X-ray photoelectron spectroscopy and scanning electron microscopy. Thermogravimetric analysis was used to confirm the presence and to evaluate the quantity of surfactants in the modified CNT.


2019 ◽  
Vol 6 (12) ◽  
pp. 2241-2250
Author(s):  
Han Wang ◽  
Meiru Zhao ◽  
Leiku Yang ◽  
Pei Liu ◽  
Weibing Du ◽  
...  

1998 ◽  
Vol 38 (5) ◽  
pp. 765-773 ◽  
Author(s):  
Laurent M. Matuana ◽  
John J. Balatinecz ◽  
Chul B. Park

Sign in / Sign up

Export Citation Format

Share Document