Clear-cutting and prescribed burning in coniferous forest: Comparison of effects on soil fungal and total microbial biomass, respiration activity and nitrification

1995 ◽  
Vol 27 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Janna Pietikäinen ◽  
Hannu Fritze
1993 ◽  
Vol 23 (7) ◽  
pp. 1286-1290 ◽  
Author(s):  
Hannu Fritze ◽  
Taina Pennanen ◽  
Janna Pietikäinen

Development of humus layer soil microbial biomass C (Cmic) and N (Nmic), fungal biomass (as soil ergosterol content), microbial respiration activity, and the soil organic C (Corg) and N (Ntot) were determined in coniferous forest soils that had received a single prescribed fire treatment at different times over a period of 45 years. The ratio of soil respiration rate to microbial biomass C (qCO2) and the Cmic/Corg and Nmic/Ntot percentages were derived from the measurements taken. All the measured biomass indicators reacted identically to show recovery from prescribed burning within 12 years. A raised metabolic quotient (qCO2) was detected in soils over the first 2 years following the fire treatment, but after the third year it had decreased to a stable level. These observations suggest that during the first few years after fire the soil microflora can be characterized on the basis of simple substrate–decomposer relationships. The first 12 years were characterized by increasing Cmic/Corg and Nmic/Ntot percentages, which then stabilized at mean values of 1.3 and 5.5%, respectively. The observed rise in the Cmic within a large pool of Corg suggested increasing availability of energy-rich C sources. These C sources are probably derived from the organic C input resulting from postfire plant succession.


2007 ◽  
Vol 87 (4) ◽  
pp. 455-458 ◽  
Author(s):  
Martin T Moroni ◽  
Paul Q Carter ◽  
Dean W Strickland ◽  
Franz Makeschin ◽  
Don-Roger Parkinson ◽  
...  

Clearcutting Newfoundland boreal forests significantly reduced organic layer fungal and total microbial biomass in clearcut areas with and without slash cover, compared with forested plots. However, aerobically incubated respiration rates were highest in organic layers from clearcut areas under slash, intermediate under forests, and lowest from clearcut areas without slash. Key words: Carbon, ergosterol, fumigation–extraction, fungal biomass, harvest slash, nitrogen


1980 ◽  
Vol 58 (15) ◽  
pp. 1704-1721 ◽  
Author(s):  
J. Bissett ◽  
D. Parkinson

The biomass, community composition, and metabolic activity of soil microorganisms were studied in adjacent burnt and unburnt areas of spruce–fir subalpine forest razed 6 years previously by a moderately severe natural fire. Similar levels of microbial biomass were observed at comparable burnt and unburnt sites, although the ratio of fungal to bacterial biomass was higher in the unburnt soils. The decreased acidity of the surface horizons in the burn probably tended to favor the development of a bacterial flora rather than a fungal flora. Microbial biomass in the burnt sites peaked earlier in the season than in the unburnt sites in response to the warmer soil temperatures and earlier thaw in the spring in the burn area.Significant differences in the species composition of the mycoflora in the organic soil horizons were observed between the burnt and unburnt sites. Apparently, these were related to qualitative differences in the recent litter. Phoma, Cladosporium, and Botrytis, which are usually associated with early stages of decomposition of herbaceous litter, were more common in the burnt soil. The mycoflora of the mineral soil horizons varied considerably from one burn site to another, possibly reflecting the geographical variation in the intensity of the burn. In overall composition, however, the mycoflora in the mineral soil horizons of the burn was not appreciably different from that of the unburnt sites.Higher laboratory rates of respiration and cellulose decomposition were observed for soil samples from the undisturbed forest. However, the rate of decomposition of cellulose in the field was much higher in the burnt sites, probably as a result of the higher soil temperatures in the burn area. Low soil temperature was concluded to be the main factor limiting microbial activities in the study area, and the removal of the insulating plant canopy and increased heat absorption by the ash in the burn area were found to increase decomposition rates, at least at this stage in the succession following the disturbance of fire.


1993 ◽  
Vol 23 (7) ◽  
pp. 1275-1285 ◽  
Author(s):  
Janna Pietikäinen ◽  
Hannu Fritze

During a 3-year study, soil microbial biomass C and N, length of the fungal hyphae, soil respiration, and the percent mass loss of needle litter were recorded in coniferous forest soil humus layers following a prescribed burning (PB) treatment or a forest fire simulation (FF) treatment (five plots per treatment). Unburned humus from adjacent plots served as controls (PC and FC, respectively). Prescribed burning was more intensive than the forest fire, and this was reflected in all the measurements taken. The amounts of microbial biomass C and N, length of fungal hyphae, and soil respiration in the PB area did not recover to their controls levels, whereas unchanged microbial biomass N and recovery of the length of the fungal hyphae to control levels were observed in the FF area. The mean microbial C/N ratio was approximately 7 in all the areas, which reflected the C/N ratio of the soil microbial community. Deviation from this mean value, as observed during the first three samplings from the PB area (3, 18, and 35 days after fire treatment), suggested a change in the composition of the microbial community. Of the two treated areas, the decrease in soil respiration (laboratory measurements) was much more pronounced in the PB area. However, when the humus samples from both areas were adjusted to 60% water holding capacity, no differences in respiration capacity were observed. The drier humus, due to higher soil temperatures, of the PB area is a likely explanation for the low soil respiration. Lower soil respiration was not reflected in lower litter decomposition rates of the PB area, since there was a significantly higher needle litter mass loss during the first year in the PB area followed by a decline to the control level during the second year. Consistently higher mass losses were recorded in the FC area than in the FF area.


Author(s):  
J.P. Jouany ◽  
J. Bohatier ◽  
J. Senaud ◽  
S. Toillon ◽  
M. Fabre

Although ciliate protozoa make up 50 % of the total microbial biomass of the rumen and play an active part in the degradation of feed, some authors have shown that animal performance is sometimes improved if they are eliminated. We have been working on a research project to determine the effect of the presence of certain genera of protozoa on digestion in ruminants.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1677
Author(s):  
Orsolya Juhász ◽  
Ágnes Fürjes-Mikó ◽  
Anna Tenyér ◽  
Anna Ágnes Somogyi ◽  
Dianne Joy Aguilon ◽  
...  

The consequences of anthropogenic climate change are one of the major concerns of conservation biology. A cascade of negative effects is expected to affect various ecosystems, one of which is Central European coniferous forests and their unique biota. These coniferous forests are the primary habitat of many forest specialist species such as red wood ants. Climate change-induced rising of temperature allows trees to skip winter hibernation, making them more vulnerable to storms that cause wind felling, and in turn, promotes bark beetle infestations that results in unscheduled clear-cuttings. Red wood ants can also be exposed to such habitat changes. We investigated the effects of bark beetle-induced clear-cutting and the absence of coniferous trees on colonies of Formica polyctena, including a mixed-coniferous forest as a reference. Our aim was to investigate how these habitat features affect the nest characteristics and nesting habits of F. polyctena. Our results indicate that, in the absence of conifers, F. polyctena tend to use different alternatives for nest material, colony structure, and food sources. However, the vitality of F. polyctena colonies significantly decreased (smaller nest mound volumes). Our study highlights the ecological flexibility of this forest specialist and its potential to survive under extreme conditions.


2020 ◽  
Author(s):  
Christian Ranits ◽  
Lucia Fuchslueger ◽  
Leandro Van Langenhove ◽  
Ivan Janssens ◽  
Josep Peñuelas ◽  
...  

<p>Tropical forest ecosystems are important components of global biogeochemical cycling. Many tropical rainforests grow in old and highly weathered soils, depleted in phosphorus (P) and net primary productivity in tropical forests is often limited by P availability. It is unclear, however, if heterotrophic microbial communities in tropical soils are also limited by P or rather by carbon (C). Elemental limitations of microorganisms in soil have often been approached by measurements of respiration rates in response to additions of nutrients or carbon. However, it has been argued lately, that microbial growth rather than respiration should be used to assess limitations.</p><p>In this study we therefore ask the question whether the growth of heterotrophic microbial communities in tropical soil is limited by available phosphorus or by carbon. We collected soils from three sites along a topographic gradient (plateau, slope, bottom) differing in soil texture, total and available P concentrations from a well-studied, P-poor region in Nouragues, French Guiana. We incubated these soils in the laboratory with C in the form of cellulose, inorganic phosphorus and with a combination of both, and studied microbial growth by measuring the <sup>18</sup>O incorporation from labelled water into microbial DNA. Moreover, we measured microbial respiration and determined microbial biomass C, N (nitrogen) and P.</p><p>Our results demonstrate that, although microbial biomass C and N was similar in soil collected from all three topographic sites, soil respiration rates were significantly higher in soils from the plateau indicating a more active microbial community. Microbial C and N did not respond to cellulose and inorganic P additions, only microbial P increased significantly when P was added in all soils. Although microbial biomass C was not increased, C and P additions stimulated microbial respiration in clay rich plateau soils. In slope soils microbial communities initially only increased respiration activity in response to P additions, however at the end of the incubation also C showed significant differences in respiration activity, with strongest increases when C and P were added in combination. In sandier bottom soils microorganisms responded with increased activity to C addition, but also here respiration showed strongest increases in response to combined carbon and phosphorus additions. We will discuss these findings in relation to the pattern of gross growth rates in these soils and evaluate the stoichiometric limitations of microbial activity and turnover.</p>


Sign in / Sign up

Export Citation Format

Share Document