Atomic displacements close to point defects from static debye-waller factor measurements

1981 ◽  
Vol 40 (8) ◽  
pp. 789-791 ◽  
Author(s):  
H. Metzger ◽  
H. Behr ◽  
J. Peisl
2019 ◽  
Vol 75 (4) ◽  
pp. 624-632 ◽  
Author(s):  
Cristiano Malica ◽  
Andrea Dal Corso

The Debye–Waller factor explains the temperature dependence of the intensities of X-ray or neutron diffraction peaks. It is defined in terms of the B matrix whose elements B αβ are mean-square atomic displacements in different directions. These quantities, introduced in several contexts, account for the effects of temperature and quantum fluctuations on the lattice dynamics. This paper presents an implementation of the B factor (8π2 B αβ) in the thermo_pw software, a driver of Quantum ESPRESSO routines that provides several thermodynamic properties of materials. The B factor can be calculated from the ab initio phonon frequencies and displacements or can be estimated, although less accurately, from the elastic constants, using the Debye model. The B factors are computed for a few elemental crystals: silicon, ruthenium, magnesium and cadmium; the harmonic approximation at fixed geometry is compared with the quasi-harmonic approximation where the B factors are calculated accounting for thermal expansion. The results are compared with the available experimental data.


Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 78 ◽  
Author(s):  
Radoslaw Strzalka ◽  
Ireneusz Buganski ◽  
Pawel Kuczera ◽  
Lucjan Pytlik ◽  
Janusz Wolny

The standard approach applies the Gaussian distribution function to estimate atomic displacements due to thermal vibrations in periodic and aperiodic systems, which is used in a form of the Debye–Waller factor during the structure refinement. Acoustic phonons provide the largest contribution to the Gaussian correction although the character of other phonon modes remains relatively unclear. In this paper, we provide an alternative description of localized and dispersionless phonons based on an assumption of the harmonic displacement distribution function, which was recently proposed for model quasicrystals, and apply this approach for a decagonal Al-Cu-Rh quasicrystal that was previously studied by Kuczera et al. in 2012. We used the same X-ray diffraction data and the statistical method of structural analysis of the aperiodic systems. The correction function for phonons takes the form of a Bessel function instead of a conventional (Gaussian) Debye–Waller factor. This allowed us to achieve R-factor of 7.2% compared to 7.9% reported in the original paper. A significant improvement of the calculated atomic composition towards experimentally obtained and minor positional changes is also reported compared to the original paper. The results show the usefulness of investigating different corrective terms for diffraction data during a structure refinement.


2002 ◽  
Vol 16 (11n12) ◽  
pp. 1713-1719 ◽  
Author(s):  
M. FILLIPPI ◽  
N. L. SAINI ◽  
H. OYANAGI ◽  
A. BIANCONI

We report local structure of Nb3Ge intermetallic superconductor by Ge K-edge extended X-ray absorption fine structure (EXAFS) measurements performed in the temperature range of 6–300 K, with an emphasis to determine the local and instantaneous atomic displacements across the superconducting transition temperature T c . We find that the temperature dependent correlated Debye–Waller factor of the Ge-Nb bonds shows a drop at the T c while cooling the sample, similar to the one observed in the high-T c cuprate superconductors. The results provide a clear indication of an intimacy between the local atomic displacements and the short coherence superconductivity, and suggests that local electron-lattice interaction should be considered to explain the high-T c superconductivity in these materials.


Author(s):  
T. Geipel ◽  
W. Mader ◽  
P. Pirouz

Temperature affects both elastic and inelastic scattering of electrons in a crystal. The Debye-Waller factor, B, describes the influence of temperature on the elastic scattering of electrons, whereas the imaginary part of the (complex) atomic form factor, fc = fr + ifi, describes the influence of temperature on the inelastic scattering of electrons (i.e. absorption). In HRTEM simulations, two possible ways to include absorption are: (i) an approximate method in which absorption is described by a phenomenological constant, μ, i.e. fi; - μfr, with the real part of the atomic form factor, fr, obtained from Hartree-Fock calculations, (ii) a more accurate method in which the absorptive components, fi of the atomic form factor are explicitly calculated. In this contribution, the inclusion of both the Debye-Waller factor and absorption on HRTEM images of a (Oll)-oriented GaAs crystal are presented (using the EMS software.Fig. 1 shows the the amplitudes and phases of the dominant 111 beams as a function of the specimen thickness, t, for the cases when μ = 0 (i.e. no absorption, solid line) and μ = 0.1 (with absorption, dashed line).


1989 ◽  
Vol 72 (11) ◽  
pp. 1135-1140 ◽  
Author(s):  
R.C. Shukla ◽  
H. Hübschle

1982 ◽  
Vol 45 (2) ◽  
pp. 287-298 ◽  
Author(s):  
N. Garcia ◽  
A. A. Maradudin ◽  
V. Celli

IUCrJ ◽  
2016 ◽  
Vol 3 (4) ◽  
pp. 247-258 ◽  
Author(s):  
Tsunetomo Yamada ◽  
Hiroyuki Takakura ◽  
Holger Euchner ◽  
Cesar Pay Gómez ◽  
Alexei Bosak ◽  
...  

The detailed atomic structure of the binary icosahedral (i) ScZn7.33quasicrystal has been investigated by means of high-resolution synchrotron single-crystal X-ray diffraction and absolute scale measurements of diffuse scattering. The average atomic structure has been solved using the measured Bragg intensity data based on a six-dimensional model that is isostructural to the i-YbCd5.7one. The structure is described with a quasiperiodic packing of large Tsai-type rhombic triacontahedron clusters and double Friauf polyhedra (DFP), both resulting from a close-packing of a large (Sc) and a small (Zn) atom. The difference in chemical composition between i-ScZn7.33and i-YbCd5.7was found to lie in the icosahedron shell and the DFP where in i-ScZn7.33chemical disorder occurs on the large atom sites, which induces a significant distortion to the structure units. The intensity in reciprocal space displays a substantial amount of diffuse scattering with anisotropic distribution, located around the strong Bragg peaks, that can be fully interpreted as resulting from phason fluctuations, with a ratio of the phason elastic constantsK2/K1= −0.53,i.e.close to a threefold instability limit. This induces a relatively large perpendicular (or phason) Debye–Waller factor, which explains the vanishing of `high-Qperp' reflections.


Sign in / Sign up

Export Citation Format

Share Document