Comparison of quasi-Hartree-Fock wave-functions for lithium hydride

1992 ◽  
Vol 83 (9) ◽  
pp. 725-730 ◽  
Author(s):  
T. Asthalter ◽  
W. Weyrich ◽  
A.H. Harker ◽  
A.B. Kunz ◽  
R. Orlando ◽  
...  

Equations which determine the optimum form of paired-electron orbitals are derived. It is shown that for large nuclear separations these equations become the Hartree-Fock equa­tions for appropriate valence states of the separated atoms. An electrostatic interpretation of chemical bonding is developed using optimum paired-electron orbital functions. For these wave functions this simple procedure yields results identical with those obtained by the conventional method of calculation based on the Hamiltonian integral. Numerical computations by the electrostatic method are also discussed.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 37-46 ◽  
Author(s):  
K. D. Sen ◽  
P. C. Schmidt ◽  
Alarich Weiss

The Sternheimer shielding-antishielding functions ß(r) and γ(r) are reported for all the fourteen lanthanide atoms at the uncoupled Hartree-Fock level of theory. Each atom is considered in two valence state configurations, 4fn 5d0 and 4 fn-1 5d1, and the nonrelativistic HF wave functions have been used. The 5d1 configuration leads to a smaller net antishielding than the 4fn configuration by ~ 6-12% in the series. The electron-electron self consistency effects are found to be less than 5% in the series. The importance of the calculated antishielding functions in the antishielding theory of electric field gradients in noncubic metals is discussed.


The quantal theory of the continuous photo-electric absorption of radiation is briefly summarized, pàrticular attention being given to the alternative formulae available and to the accuracy to be expected in practical calculations. Detailed calculations are described for the photo-ionization cross-section of neon, a system for which it is understood that experimental data should be available in the near future. The calculation is made using Hartree-Fock wave functions and the two formulae of the dipole length and the dipole velocity. The corresponding cross-sections are found to be 5.8 and 4.4 x 10- 18 cm 2 . at the spectral head and to rise slowly with increasing frequency until a broad maximum is reached for an energy of the ejected electron of about 11 eV. A comparison is made with previous calculations on the elements from boron to neon ; the general trend of the results is discussed and improved estimates for boron and fluorine are given (10 x 10 -18 cm 2 . for boron and 4.3 x 10- 18 cm 2 . for fluorine at the spectral head).


2015 ◽  
Vol 12 (1) ◽  
pp. 204-209
Author(s):  
Baghdad Science Journal

The division partitioning technique has been used to analyze the four electron systems into six-pairs electronic wave functions for ( for the Beryllium atom in its excited state (1s2 2s 3s ) and like ions ( B+1 ,C+2 ) using Hartree-Fock wave functions . The aim of this work is to study atomic scattering form factor f(s) for and nuclear magnetic shielding constant. The results are obtained numerically by using the computer software (Mathcad).


1969 ◽  
Vol 47 (13) ◽  
pp. 1331-1336 ◽  
Author(s):  
R. A. Moore ◽  
S. H. Vosko

The dependence of the Fermi surface electron wave functions in Na and K on (i) an L-dependent effective local cellular potential constructed to simulate Hartree-Fock theory and (ii) the inclusion of the Hartree field due to the conduction electrons in the cellular potential is investigated. All calculations are performed using the Wigner–Seitz spherical cellular approximation and the Schrödinger equation is solved by the Kohn variational method. It is found that to ensure a value of the Fermi surface electron density at the nucleus accurate to ~5%, it is necessary to use the L-dependent potential along with the Hartree field due to a realistic conduction electron density.


1961 ◽  
Author(s):  
R. E. WATSON ◽  
A. J. FREEMAN
Keyword(s):  

Author(s):  
John A. Tossell ◽  
David J. Vaughan

In this chapter, the most important quantum-mechanical methods that can be applied to geological materials are described briefly. The approach used follows that of modern quantum-chemistry textbooks rather than being a historical account of the development of quantum theory and the derivation of the Schrödinger equation from the classical wave equation. The latter approach may serve as a better introduction to the field for those readers with a more limited theoretical background and has recently been well presented in a chapter by McMillan and Hess (1988), which such readers are advised to study initially. Computational aspects of quantum chemistry are also well treated by Hinchliffe (1988). In the section that follows this introduction, the fundamentals of the quantum mechanics of molecules are presented first; that is, the “localized” side of Fig. 1.1 is examined, basing the discussion on that of Levine (1983), a standard quantum-chemistry text. Details of the calculation of molecular wave functions using the standard Hartree-Fock methods are then discussed, drawing upon Schaefer (1972), Szabo and Ostlund (1989), and Hehre et al. (1986), particularly in the discussion of the agreement between calculated versus experimental properties as a function of the size of the expansion basis set. Improvements on the Hartree-Fock wave function using configuration-interaction (CI) or many-body perturbation theory (MBPT), evaluation of properties from Hartree-Fock wave functions, and approximate Hartree-Fock methods are then discussed. The focus then shifts to the “delocalized” side of Fig. 1.1, first discussing Hartree-Fock band-structure studies, that is, calculations in which the full translational symmetry of a solid is exploited rather than the point-group symmetry of a molecule. A good general reference for such studies is Ashcroft and Mermin (1976). Density-functional theory is then discussed, based on a review by von Barth (1986), and including both the multiple-scattering self-consistent-field Xα method (MS-SCF-Xα) and more accurate basis-function-density-functional approaches. We then describe the success of these methods in calculations on molecules and molecular clusters. Advances in density-functional band theory are then considered, with a presentation based on Srivastava and Weaire (1987). A discussion of the purely theoretical modified electron-gas ionic models is followed by discussion of empirical simulation, and we conclude by mentioning a recent approach incorporating density-functional theory and molecular dynamics (Car and Parrinello, 1985).


Sign in / Sign up

Export Citation Format

Share Document