Accelerated stability studies on 16-methylene-17α-acetoxy-19-nor-pregn-4-ene-3,20-dione (Nestorone™)

Steroids ◽  
1995 ◽  
Vol 60 (8) ◽  
pp. 534-539 ◽  
Author(s):  
S Ahmed
2017 ◽  
Vol 29 (1) ◽  
pp. 94-98 ◽  
Author(s):  
Santosh R. Butle ◽  
Padmanabh B. Deshpande

2021 ◽  
Vol 18 ◽  
Author(s):  
Komal Parmar ◽  
Jay Shah

Purpose: Present investigation was aimed to fabricate nanocrystal of exemestane, an anticancer drug with poor dissolution properties and oral bioavailability. Methods: Influence of various process parameters on the formulation of exemestane nanosuspension using media milling technique were investigated in the trial batches. Box-Behnken design was applied with independent variables identified in the preliminary studies, viz. X1-Milling time, X2-Amount of stabilizer and X3-Amount of milling agent. In vitro dissolution and in vivo studies were carried out. Solid state characterization (PXRD, SEM, and DSC) studies demonstrated physical changes in drug due to nano-crystallization. Accelerated stability studies of optimized formulation were carried out. Results: Individual process attributes exhibited significant effect on the average particle size of exemestane nanosuspension. Dissolution studies revealed enhancement in drug release rate as compared to pure exemestane powder. The in vivo pharmacokinetic parameters of exemestane nanosuspension showed significant improvement in Cmax and AUC0-t, about 283.85% and 271.63% respectively suggesting amelioration in oral bioavailability by 2.7-fold as compared to pure exemestane. Accelerated stability studies of the optimized formulation suggested stability of the nanocrystals for at least sixmonth period. Conclusion: Nanocrystals prepared by media milling technique were successful in improving the poor dissolution properties and oral bioavailability of exemestane.


2016 ◽  
Vol 18 (4) ◽  
pp. 1158-1176 ◽  
Author(s):  
Don Clancy ◽  
Neil Hodnett ◽  
Rachel Orr ◽  
Martin Owen ◽  
John Peterson

Author(s):  
Ibrahim Javed ◽  
Saeed ur Rasheed Nazir ◽  
Nazar Muhammad Ranjha ◽  
Asif Massud ◽  
Liaqat Hussain

Author(s):  
Abdul Ahad Hindustan ◽  
U Anand Babu ◽  
K Nagesh ◽  
D Sai Kiran ◽  
K Bindu Madhavi

The main purpose of the present work was to develop matrix tablets of Glimepiride with Datura stramonium leaves mucilage and Poly Vinyl Pyrrolidone and to study its functionality as a matrix forming agent for sustained release tablet formulations. Mucilage from Datura stramonium leaves was extracted, isolated, purified and characterized. Physicochemical properties of the dried powdered mucilage of Datura stramonium leaves were studied. Various formulations of Glimepiride Datura stramonium leave mucilage and Poly Vinyl Pyrrolidone were prepared. The formulated tablets were tested for mechanical properties, friability, swelling behavior, in vitro drug release pattern and the dissolution data was treated with mathematical modeling and the optimized formulation was tested for accelerated stability studies. The formulated tablets were found to have good mechanical properties, good swelling properties. The in vitro dissolution data was perfectly fitting to zero order and the release of drug from the formulation followed Higuchi’s release. The accelerated stability studies revealed that the tablets retain their characteristics even after stressed storage conditions. From this study it was concluded that the dried Datura stramonium leaves mucilage and Poly Vinyl Pyrrolidone combination can be used as a matrix forming material for making sustained release matrix tablets. DOI: http://dx.doi.org/10.3126/kuset.v8i1.6044 KUSET 2012; 8(1): 63-72


Sign in / Sign up

Export Citation Format

Share Document