A theoretical investigation of the two-dimensional growth of silver clusters: The silver bubble

1988 ◽  
Vol 203 (3) ◽  
pp. 525-553 ◽  
Author(s):  
C. Minot ◽  
B. Bigot ◽  
A. Hariti
Author(s):  
Xin Qiao ◽  
Xiaodong Lv ◽  
Yinan Dong ◽  
Yanping Yang ◽  
Fengyu Li

Author(s):  
S. D. Daymond ◽  
L. Rosenhead

The following theoretical investigation of the two-dimensional flow of an inviscid fluid past a keel and rudder, and of the consequent lateral force, follows experiments performed by Prof. T. B. Abell in the Department of Naval Architecture of the University of Liverpool, and we wish to acknowledge our indebtedness to him for the information given in many discussions.


2013 ◽  
Vol 366 ◽  
pp. 35-38 ◽  
Author(s):  
Yuantao Zhang ◽  
Xin Dong ◽  
Guoxing Li ◽  
Wancheng Li ◽  
Baolin Zhang ◽  
...  

2021 ◽  
Vol 932 ◽  
Author(s):  
Gary R. Hunt ◽  
Jamie P. Webb

The behaviour of turbulent, buoyant, planar plumes is fundamentally coupled to the environment within which they develop. The effect of a background stratification directly influences a plumes buoyancy and has been the subject of numerous studies. Conversely, the effect of an ambient co-flow, which directly influences the vertical momentum of a plume, has not previously been the subject of theoretical investigation. The governing conservation equations for the case of a uniform co-flow are derived and the local dynamical behaviour of the plume is shown to be characterised by the scaled source Richardson number and the relative magnitude of the co-flow and plume source velocities. For forced, pure and lazy plume release conditions the co-flow acts to narrow the plume and reduce both the dilution and the asymptotic Richardson number relative to the classic zero co-flow case. Analytical solutions are developed for pure plumes from line sources, and for highly forced and highly lazy releases from sources of finite width in a weak co-flow. Contrary to releases in quiescent surroundings, our solutions show that all classes of release can exhibit plume contraction and the associated necking. For entraining plumes, a dynamical invariance spatially only occurs for pure and forced releases and we derive the co-flow strengths that lead to this invariance.


ACS Photonics ◽  
2018 ◽  
Vol 5 (12) ◽  
pp. 5055-5067 ◽  
Author(s):  
Chenyang Xing ◽  
Xing Chen ◽  
Weichun Huang ◽  
Yufeng Song ◽  
Jihao Li ◽  
...  

2019 ◽  
Vol 19 (4) ◽  
pp. 542-547
Author(s):  
Agata Jasik ◽  
Iwona Sankowska ◽  
Andrzej Wawro ◽  
Jacek Ratajczak ◽  
Dariusz Smoczyński ◽  
...  

1999 ◽  
Vol 572 ◽  
Author(s):  
Stefan Zollner ◽  
Atul Konkar ◽  
R. B. Gregory ◽  
S. R. Wilson ◽  
S. A. Nikishin ◽  
...  

ABSTRACTWe measured the ellipsometric response from 0.7–5.4 eV of c-axis oriented AlN on Si (111) grown by molecular beam epitaxy. We determine the film thicknesses and find that for our AlN the refractive index is about 5–10% lower than in bulk AlN single crystals. Most likely, this discrepancy is due to a low film density (compared to bulk AlN), based on measurements using Rutherford backscattering. The films were also characterized using atomic force microscopy and x-ray diffraction to study the growth morphology. We find that AlN can be grown on Si (111) without buffer layers resulting in truely two-dimensional growth, low surface roughness, and relatively narrow x-ray peak widths.


Sign in / Sign up

Export Citation Format

Share Document