Identification of species-specific components in bothropic venoms

Toxicon ◽  
1996 ◽  
Vol 34 (2) ◽  
pp. 158-159
Author(s):  
D. Catty ◽  
L.G.D. Heneine
Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 622
Author(s):  
Sabrina Saltaji ◽  
Olivier Rué ◽  
Valérie Sopena ◽  
Sophie Sablé ◽  
Fatoumata Tambadou ◽  
...  

The undefined mixed starter culture (UMSC) is used in the manufacture of cheeses. Deciphering UMSC microbial diversity is important to optimize industrial processes. The UMSC was studied using culture-dependent and culture-independent based methods. MALDI-TOF MS enabled identification of species primarily from the Lactococcus genus. Comparisons of carbohydrate metabolism profiles allowed to discriminate five phenotypes of Lactococcus (n = 26/1616). The 16S sequences analysis (V1–V3, V3–V4 regions) clustered the UMSC microbial diversity into two Lactococcus operational taxonomic units (OTUs). These clustering results were improved with the DADA2 algorithm on the housekeeping purR sequences. Five L. lactis variants were detected among the UMSC. The whole-genome sequencing of six isolates allowed for the identification of the lactis subspecies using Illumina® (n = 5) and Pacbio® (n = 1) technologies. Kegg analysis confirmed the L. lactis species-specific niche adaptations and highlighted a progressive gene pseudogenization. Then, agar spot tests and agar well diffusion assays were used to assess UMSC antimicrobial activities. Of note, isolate supernatants (n = 34/1616) were shown to inhibit the growth of Salmonella ser. Typhimurium CIP 104115, Lactobacillus sakei CIP 104494, Staphylococcus aureus DSMZ 13661, Enterococcus faecalis CIP103015 and Listeria innocua CIP 80.11. Collectively, these results provide insightful information about UMSC L. lactis diversity and revealed a potential application as a bio-protective starter culture.


2019 ◽  
Vol 146 (4) ◽  
pp. 2939-2939
Author(s):  
Rebecca Cohen ◽  
Amanda Leu ◽  
Kaitlin E. Frasier ◽  
Melissa Soldevilla ◽  
John Hildebrand

2014 ◽  
Vol 81 ◽  
pp. 61-70 ◽  
Author(s):  
Iván Darío Soto-Calderón ◽  
Nicholas Jonathan Clark ◽  
Julia Vera Halo Wildschutte ◽  
Kelly DiMattio ◽  
Michael Ignatius Jensen-Seaman ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2713
Author(s):  
Oleg S. Alexandrov ◽  
Gennady I. Karlov

The Elaeagnus L. species are trees and bushes that mainly grow in temperate zones of Western Europe; Minor, Central, and Southeast Asia; the Far East; and North America. Some species are used as fruit or ornamental plants and have economic value. Problems with the identification of species in the Elaeagnus genus by molecular genetical methods arise in the study of populations, systematics, breeding, and other areas of plant science and practice. Recently, the polymorphism of 5S ribosomal DNA non-transcribed spacers (5S rDNA NTSs) in Elaeagnaceae Adans. has been described. The results were used in our study as a basis for development of new species-specific molecular markers for some members of the Elaeagnus genus. The author’s method was applied for finding regions that were potentially applicable for species-specific primer design. As a result, some species-specific molecular markers were developed for Elaeagnus angustifolia L., E. commutata Bernh., E. pungens Thunb., and E. multiflora Thunb. These markers were tested in a range of samples and showed the presence of amplified fragments in lanes of the marked species only. Samples of other species showed no amplifications. Thus, the developed markers may be useful for the species identification of the studied Elaeagnus plants in botanical, dendrological, and genetic research (especially in a leafless period of year), as well as in breeding and hybridization experiments.


Sign in / Sign up

Export Citation Format

Share Document