1021. Carbon/oxygen reaction in molten nickel and Ni-10 per cent chromium in a vacuum induction furnace

Vacuum ◽  
1967 ◽  
Vol 17 (5) ◽  
pp. 303
Metallurgist ◽  
1974 ◽  
Vol 18 (7) ◽  
pp. 526-527
Author(s):  
N. P. Pozdeev ◽  
Al. G. Shalimov ◽  
A. B. Sergeev ◽  
R. F. Maksutov ◽  
I. V. Khalyakin

2007 ◽  
Vol 23 ◽  
pp. 283-386
Author(s):  
Mariana Lucaci ◽  
Radu L. Orban ◽  
M. Lazarescu ◽  
Stefania Gavriliu ◽  
Magdalena Lungu ◽  
...  

Directional solidification techniques have been applied to produce Ni based intermetallic alloys with preferentially oriented columnar crystals extended along the complete length and parallel to the solidification direction. Enhanced ductility is expected from such alloys. In this paper we present the research results concerning the application of this technique to some complex Ni3Al- Fe-B alloys obtained from compacted mixtures of elemental powders. The corresponding master alloys have been obtained in a vacuum induction furnace by the known Exo-Melt process [1]. The directional solidification of these alloys was subsequently performed on cylindrical samples, at two solidification rates, 30 and 15 mm/h. The influence of the rate and composition used on the dimensional variations, densities, microstructure, constituent phases and lattice parameters, as well as on the surface chemical composition have been documented and are presented in the paper.


2012 ◽  
Vol 476-478 ◽  
pp. 164-169
Author(s):  
Wei Xiang Wang ◽  
Zheng Liang Xue ◽  
Sheng Qiang Song ◽  
Ping Li ◽  
Zhi Chao Chen

The basic thermodynamic analysis of silicothermic reduction during direct alloying to smelting vanadium steel with V2O5 was discussed in this paper. The high-temperature carbon tube furnace and medium frequency vacuum induction furnace were used to study the phase compositions of the reduction products and the change law of the yield of vanadium when V2O5 was reduced by ferrosilicon. The research shows that the main phases of the silicothermic reduction products were VSi2、FeVO4 and Ca2SiO4 under the condition of using CaO to restrain the volatile of V2O5. Yield of vanadium was gradually improved with the increase of ferrosilicon during the direct alloying. The yield of vanadium in the steel is as high as 95.25% when the addition of ferrosilicon is 35%.


MRS Advances ◽  
2019 ◽  
Vol 4 (57-58) ◽  
pp. 3097-3104
Author(s):  
Bayron Santoveña ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra

ABSTRACTPseudo-α or near-α titanium alloys are being widely used in the power generation industry due to their stability at high temperature service, good mechanical characteristics and corrosion resistance. Particularly Ti-6% Al-1.5% V-1.0Mo-0.5% Zr-0.1% C alloy is mainly used in turbines components, heat exchangers and pipes for steam conduction, among others; these are subjected to critical conditions of temperature, abrasion and corrosive environments. A good performance of such devices depends on the chemistry and of the material processing story.Effects on microstructure and wear resistance with the addition of Ru and small variation of V and Mo amounts in the Ti-6% Al-1.5% V-1.0Mo-0.5% Zr-0.1% C alloy were analyzed. Three different alloys were melted in a vacuum induction furnace with a cooled copper skull under an argon protective atmosphere for this studyFour alloys were melted “Alloy 1” Ti-6% Al-1.5% V-1.0Mo-0.5% Zr-0.1% C-0.3% Ru, “Alloy 2” Ti-6%Al-0.5%V-1.6%Mo-0.5%Zr-0.1% C-0.3% Ru, “Alloy 3” Ti-6%Al-2.2%V-0.5%Mo-0.5%Zr-0.1%C-0.3%Ru. After melting, all alloys were homogenized at 1200°C for two hours, followed by hot rolling above β transition temperature with a reduction of 50% in thickness.All alloys were analyzed by using scanning electron microscopy (SEM) and Vickers Micro hardness (HV). Results shown that Mo and V variations modified the micro hardness by microstructure refinement. In contrast, the addition of Ru showed no microstructure modification.


2017 ◽  
Vol 62 (4) ◽  
pp. 2449-2453 ◽  
Author(s):  
G. Siwiec ◽  
P. Buliński ◽  
M. Palacz ◽  
J. Smołka ◽  
L. Blacha

AbstractThe paper presents analysis and assessment of operating power of vacuum induction furnace in relation to the efficiency of lead removal from Cu-Pb alloy in VIM (vacuum induction melting) technology. Thermodynamic analysis of the process is performed as well.


2015 ◽  
Vol 229 ◽  
pp. 125-130
Author(s):  
Agnieszka Szkliniarz ◽  
Wojciech Szkliniarz

The paper characterized the phase composition, microstructure and selected mechanical properties at room temperature and at temperature corresponding to the expected operating conditions of a new generation of TiAl based alloys melted in a vacuum induction furnace in a special graphite crucibles.


Sign in / Sign up

Export Citation Format

Share Document