microstructure modification
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 53)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Behrouz Bagheri ◽  
Amin Abdollahzadeh ◽  
Farzaneh Sharifi ◽  
Mahmoud Abbasi ◽  
Ahmad Ostovari Moghaddam

In this paper, the effect of mechanical vibration with reinforcement particles namely Silicon Carbide (SiC) on microstructure, mechanical properties, wear, and corrosion behaviors of aluminum alloy surface composites fabricated via friction stir processing (FSP) was investigated. The method was entitled friction stir vibration process (FSVP). The results revealed that recrystallized fine grains formed in all processing samples as a result of dynamic recovery and recrystallization, while samples processed in friction stir vibration processing resulted in better grain refinement in the stir zone than in conventional friction stir processing. Compared to conventional friction stir processing, in friction stir vibration processing, the hardness and tensile strength increased due to microstructure modification and better reinforcing distribution. From corrosion analysis, the corrosion resistance of the friction stir vibration processed samples showed a significant increase compared to the friction stir processed specimens. The wear results indicated that the wear resistance of friction stir vibration processed specimens is higher than friction stir processed specimens due to the development of smaller grains and a more homogenous distribution of the strengthening particles as the vibration is applied.


Author(s):  
Kaweewat Worasaen ◽  
Piyada Suwanpinij ◽  
Karuna Tuchinda

This research aimed to investigate the microstructure modification mechanism used to improve the hardness and wear resistance of SKH51 steel. The cryogenic treatment (CT), including both shallow cryogenic treatment (SCT) and deep cryogenic treatment (DCT), was used to modify the microstructure of SKH51 steel in this research. The effect of short and long holding time (12 and 36 h) in CT was studied. The microstructures were evaluated by using a light optical microscopy (LOM) and a scanning electron microscopy (SEM). The phase identifications of the matrix, carbides, and a-parameter of the matrix were analyzed by using X-ray diffraction (XRD). The M6C and MC carbides size, aspect ratio, and distribution were analyzed using digimizer image analysis software on the SEM micrographs. Micro-Vickers were employed to evaluate the hardness of the targeted samples. Wear tests were performed by using a 6 mm diameter WC ball as the indenter and 5-N-constant load with a ball-on-disk wear tester. The results suggested that the increase of the secondary carbide was caused by the contraction and expansion phenomena of the matrix’s lattice, forcing the carbon atom out and acting as the carbide nucleation. The influence of holding time in the SCT and DCT regions was different. For the SCT, increasing the holding time increased the volume’s fraction of MC carbide. Conversely, the M6C carbide size grew with increasing holding time in the DCT region, while no significant increase in the number of MC carbide was observed. The cryogenic treatment was found to increase the volume fraction of the MC carbide by up to 10% compared to the conventional heat treatment (CHT) condition in the SCT region (both 12 and 36 h) and DCT with 12 h holding time. Due to the microstructure modification, it was found that the cryogenic treatment can improve material hardness and lead to an increase in the wear resistance of SKH51 by up to 70% compared to the CHT treated material. This was due to the increase in the compressive residual stress, precipitation of the MC, and growth of the M6C primary carbide.


2021 ◽  
Vol 12 (5) ◽  
pp. 5745-5752

Pure titanium (Ti) sheets were subjected to shot peening to achieve grain refinement at the surface. Microstructural studies revealed significant grain refinement at the surface of the Ti sheet after shot peening. The affected thickness of the grain refined region was measured as 150 µm at the cross-section. Due to the fine grain structure, higher hardness was measured for the processed surface. X-ray diffraction studies of the processed sample showed peak broadening for processed Ti due to shot peening. Wettability studies conducted by contact angle measurements clearly showed increased hydrophilicity for the processed Ti as reflected in the lower contact angles. Increased surface energy was calculated for the shot-peened Ti, which can be attributed to the role of the increased fraction of grain boundaries due to microstructure modification. The results demonstrate the potential of the shot peening process to improve the surface wettability and further directly enhance the bioactivity of the Ti implant.


Author(s):  
Xingeng Lei ◽  
Yufeng Wang ◽  
Quansheng Wang ◽  
Li Li ◽  
Xianjin Ning

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1344
Author(s):  
Haris Ali Khan ◽  
Kamran Asim ◽  
Farooq Akram ◽  
Asad Hameed ◽  
Abdullah Khan ◽  
...  

Roll bonding (RB) describes solid-state manufacturing processes where cold or hot rolling of plates or sheet metal is carried out for joining similar and dissimilar materials through the principle of severe plastic deformation. This review covers the mechanics of RB processes, identifies the key process parameters, and provides a detailed discussion on their scientific and/or engineering aspects, which influence the microstructure–mechanical behavior relations of processed materials. It further evaluates the available research focused on improving the metallurgical and mechanical behavior of bonded materials such as microstructure modification, strength enhancement, local mechanical properties, and corrosion and electrical resistance evolution. Moreover, current applications and advantages, limitations of the process and developments in dissimilar material hot roll bonding technologies for producing titanium to steel and stainless steel to carbon steel ultra-thick plates are also discussed. The paper concludes by deliberating on the bonding mechanisms, engineering guidelines and process–property–structure relationships, and recommending probable areas for future research.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4588
Author(s):  
Abdul Wahid Shah ◽  
Seong-Ho Ha ◽  
Bong-Hwan Kim ◽  
Young-Ok Yoon ◽  
Hyun-Kyu Lim ◽  
...  

The current study investigated the microstructure modification in Al–6Mg–5Si–0.15Ti alloy (in mass %) through the minor addition of Ca using Mg + Al2Ca master alloy and heat treatment to see their impact on mechanical properties. The microstructure of unmodified alloy (without Ca) consisted of primary Al, primary Mg2Si, binary eutectic Al–Mg2Si, ternary eutectic Al–Mg2Si–Si, and iron-bearing phases. The addition of 0.05 wt% Ca resulted in significant microstructure refinement. In addition to refinement, lamellar to fibrous-type modification of binary eutectic Al–Mg2Si phases was also achieved in Ca-added (modified) alloy. This modification was related to increasing Ca-based intermetallics/compounds in the modified alloy that acted as nucleation sites for binary eutectic Al–Mg2Si phases. The dendritic refinement with Ca addition was related to the fact that it improves the efficacy of Ti-based particles (TiAl3 and TiB2) in the melt to act as nucleation sites. In contrast, the occupation of oxide bifilms by Ca-based phases is expected to force the iron-bearing phases (as iron-bearing phases nucleate at oxide films) to solidify at lower temperatures, thus reducing their size. The as-cast microstructure of these alloys was further modified by subjecting them to solution treatment at 540 °C for 6 h, which broke the eutectic structure and redistributed Mg2Si and Si phases in Al-matrix. Subsequent aging treatment caused a dramatic increase in the tensile strength of these alloys, and tensile strength of 291 MPa (with El% of 0.45%) and 327 MPa (with El% of 0.76%) was achieved for the unmodified alloy and modified alloy, respectively. Higher tensile strength and elongation of the modified alloy than unmodified alloy was attributed to refined dendritic structure and modified second phases.


Sign in / Sign up

Export Citation Format

Share Document