The effect of helper phages and/or multiplicity of infection on the repair of ultraviolet damages in T4

Virology ◽  
1968 ◽  
Vol 36 (3) ◽  
pp. 476-489 ◽  
Author(s):  
Nils Aall Barricelli ◽  
Ralph Metcalfe
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Regan J. Hayward ◽  
Michael S. Humphrys ◽  
Wilhelmina M. Huston ◽  
Garry S. A. Myers

AbstractDual RNA-seq experiments examining viral and bacterial pathogens are increasing, but vary considerably in their experimental designs, such as infection rates and RNA depletion methods. Here, we have applied dual RNA-seq to Chlamydia trachomatis infected epithelial cells to examine transcriptomic responses from both organisms. We compared two time points post infection (1 and 24 h), three multiplicity of infection (MOI) ratios (0.1, 1 and 10) and two RNA depletion methods (rRNA and polyA). Capture of bacterial-specific RNA were greatest when combining rRNA and polyA depletion, and when using a higher MOI. However, under these conditions, host RNA capture was negatively impacted. Although it is tempting to use high infection rates, the implications on host cell survival, the potential reduced length of infection cycles and real world applicability should be considered. This data highlights the delicate nature of balancing host–pathogen RNA capture and will assist future transcriptomic-based studies to achieve more specific and relevant infection-related biological insights.


Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 491-502
Author(s):  
Eva M Camacho ◽  
Josep Casadesús

Abstract MudP and MudQ elements were used to induce duplications in Salmonella enterica by formation of a triple crossover between two transduced fragments and the host chromosome. The large size (36 kb) of MudP and MudQ is a favorable trait for duplication formation, probably because homology length is a limiting factor for the central crossover. Additional requirements are a multiplicity of infection of 2 or higher in the infecting phage suspensions (which reflects the need of two transduced fragments) and an exponentially growing recipient (which reflects the need of a chromosome replication fork). We describe a set of 11 strains of S. enterica, each carrying a chromosomal duplication with known endpoints. The collection covers all the Salmonella chromosome except the terminus. For mapping, a dominant marker (e.g., a transposon insertion in or near the locus to be mapped) is transduced into the 11-strain set. Several transductants from each cross are grown nonselectively, and haploid segregants are scored for the presence of the marker. If all the segregants contain the transduced marker, it maps outside the duplication interval. If the marker is found only in a fraction of the segregants, it maps within the duplicated region.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Celosia Lukman ◽  
Christopher Yonathan ◽  
Stella Magdalena ◽  
Diana Elizabeth Waturangi

Abstract Objective This study was conducted to isolate and characterize lytic bacteriophages for pathogenic Escherichia coli from chicken and beef offal, and analyze their capability as biocontrol for several foodborne pathogens. Methods done in this research are bacteriophage isolation, purification, titer determination, application, determination of host range and minimum multiplicity of infection (miMOI), and bacteriophage morphology. Results Six bacteriophages successfully isolated from chicken and beef offal using EPEC and EHEC as host strain. Bacteriophage titers observed between 109 and 1010 PFU mL−1. CS EPEC and BL EHEC bacteriophage showed high efficiency in reduction of EPEC or EHEC contamination in meat about 99.20% and 99.04%. The lowest miMOI was 0.01 showed by CS EPEC bacteriophage. CI EPEC and BL EPEC bacteriophage suspected as Myoviridae family based on its micrograph from Transmission Electron Microscopy (TEM). Refers to their activity, bacteriophages isolated in this study have a great potential to be used as biocontrol against several foodborne pathogens.


Nature ◽  
1963 ◽  
Vol 200 (4901) ◽  
pp. 91-92 ◽  
Author(s):  
G. E. GIFFORD

1970 ◽  
Vol 15 (2) ◽  
pp. 147-156 ◽  
Author(s):  
B. A. Bridges ◽  
Rachel E. Dennis ◽  
R. J. Munson

SUMMARYA system has been developed for the study of reversion of an amber mutation responsible for a deficiency in DNA synthesis in T4 phage E51. When complexed with bacteria able to suppress the amber mutation the induced mutation rate per phage genome per rad isWhen complexed with bacteria unable to suppress the amber mutation (and being thus unable to synthesize phage DNA) the induced mutation rate is at least 14 times lower indicating that DNA synthesis is necessary for the production of the majority of functional reversions at the amber site. The induced mutation rate in suppressor-containing bacteria is independent of multiplicity of infection between 0·2 and 5, suggesting that recombination immediately after irradiation between phage genomes is unlikely to be a requirement for the mutation process.


Gene Therapy ◽  
1999 ◽  
Vol 6 (6) ◽  
pp. 1054-1063 ◽  
Author(s):  
K Brand ◽  
R Klocke ◽  
A Poβling ◽  
D Paul ◽  
M Strauss

2021 ◽  
Vol 5 ◽  
pp. 259
Author(s):  
Abdoulie O. Touray ◽  
Victor A. Mobegi ◽  
Fred Wamunyokoli ◽  
Hellen Butungi ◽  
Jeremy K. Herren

Background: Asymptomatic Plasmodium falciparum gametocyte carriers are reservoirs for sustaining transmission in malaria endemic regions. Gametocyte presence in the host peripheral blood is a predictor of capacity to transmit malaria. However, it does not always directly translate to mosquito infectivity. Factors that affect mosquito infectivity include, gametocyte sex-ratio and density, multiplicity of infection (MOI), and host and vector anti-parasite immunity. We assess the prevalence of gametocyte carriage and some of its associated risk factors among asymptomatic schoolchildren in Western Kenya and to further analyse the association between gametocyte density, multiplicity of infection (MOI) and mosquito infection prevalence. Methods: P. falciparum parasite infections were detected by RDT (Rapid Diagnostic Test) and microscopy among schoolchildren (5-15 years old). Blood from 37 microscopy positive gametocyte carriers offered to laboratory reared An. gambiae s.l. mosquitoes. A total of 3395 fully fed mosquitoes were screened for Plasmodium sporozoites by ELISA. P. falciparum was genotyped using 10 polymorphic microsatellite markers. The association between MOI and gametocyte density and mosquito infection prevalence was investigated. Results: A significantly higher prevalence of P. falciparum infection was found in males 31.54% (764/2422) (p-value < 0.001) compared to females 26.72% (657/2459). The microscopic gametocyte prevalence among the study population was 2% (84/4881). Children aged 5-9 years have a higher prevalence of gametocyte carriage (odds ratios = 2.1 [95% CI = 1.3–3.4], P = 0.002) as compared to children aged 10-15 years. After offering gametocyte positive blood to An. gambiae s.l. by membrane feeding assay, our results indicated that 68.1% of the variation in mosquito infection prevalence was accounted for by gametocyte density and MOI (R-SQR. = 0.681, p < 0.001). Conclusions: We observed a higher risk of gametocyte carriage among the younger children (5-9 years). Gametocyte density and MOI significantly predicted mosquito infection prevalence.


Sign in / Sign up

Export Citation Format

Share Document