Spectral sensitivity of the system controlling visual pigment composition in tadpole eyes

1974 ◽  
Vol 14 (10) ◽  
pp. 929-935 ◽  
Author(s):  
C.D.B. Bridges
1977 ◽  
Vol 55 (6) ◽  
pp. 1000-1009 ◽  
Author(s):  
William N. McFarland ◽  
Donald M. Allen

The effects of light, temperature, and thyroxine on the proportions of two visual pigments (rhodopsin and porphyropsin) are compared for three species of fishes in which the pigment proportions change oppositely in response to light (rainbow and brook trout vs. common shiners). In rainbow trout and common shiners higher temperatures reduced the proportions of porphyropsin in the retina, independent of photic conditions. The greatest differences between the warm and cold treatment groups, however, were obtained with a photoperiod as contrasted with continuous light or darkness. Capping of one eye in brook trout reduced porphyropsin independently of the uncapped eye. Thyroxine, which favors porphyropsin in both species groups, acted effectively only in the presence of light. It is suggested that a photoperiod, which produces both bleaching and photomechanical movements within the retina, enhances the exchange of vitamin A1 and A2 aldehydes between the photoreceptor cells and the pigment epithelium. Apparently light influences these processes oppositely in the different groups of fishes. A model to explain how photic conditions affect visual pigment composition in tadpoles (Bridges 1975) is extended to account for the opposite responses to light and darkness observed in different fishes.


1974 ◽  
Vol 60 (2) ◽  
pp. 383-396
Author(s):  
HOWARD L. GILLARY

1. The cornea-negative ERG of the eye of Strombus exhibited two distinct ‘on’ peaks, a steady state during sustained illumination, and small rhythmic oscillations following the cessation of stimulation. 2. In certain afferent optic nerve fibres, illumination evoked phasic and tonic ‘on’ responses; others, whose activity was inhibited by light, responded with repetitive ‘off’ bursts which tended to occur in phase with the rhythmic ERG oscillations. 3. Spectral sensitivity studies indicate the presence of a single visual pigment with a peak absorption of about 485 nm. 4. The effects on the response of temperature and stimulus intensity and frequency were also examined. 5. The results indicate photo-excitation and synaptic inhibition of the receptors, and excitatory coupling between them.


1968 ◽  
Vol 51 (2) ◽  
pp. 125-156 ◽  
Author(s):  
George Wald

Extraction of two visual pigments from crayfish eyes prompted an electrophysiological examination of the role of visual pigments in the compound eyes of six arthropods. The intact animals were used; in crayfishes isolated eyestalks also. Thresholds were measured in terms of the absolute or relative numbers of photons per flash at various wavelengths needed to evoke a constant amplitude of electroretinogram, usually 50 µv. Two species of crayfish, as well as the green crab, possess blue- and red-sensitive receptors apparently arranged for color discrimination. In the northern crayfish, Orconectes virilis, the spectral sensitivity of the dark-adapted eye is maximal at about 550 mµ, and on adaptation to bright red or blue lights breaks into two functions with λmax respectively at about 435 and 565 mµ, apparently emanating from different receptors. The swamp crayfish, Procambarus clarkii, displays a maximum sensitivity when dark-adapted at about 570 mµ, that breaks on color adaptation into blue- and red-sensitive functions with λmax about 450 and 575 mµ, again involving different receptors. Similarly the green crab, Carcinides maenas, presents a dark-adapted sensitivity maximal at about 510 mµ that divides on color adaptation into sensitivity curves maximal near 425 and 565 mµ. Each of these organisms thus possesses an apparatus adequate for at least two-color vision, resembling that of human green-blinds (deuteranopes). The visual pigments of the red-sensitive systems have been extracted from the crayfish eyes. The horse-shoe crab, Limulus, and the lobster each possesses a single visual system, with λmax respectively at 520 and 525 mµ. Each of these is invariant with color adaptation. In each case the visual pigment had already been identified in extracts. The spider crab, Libinia emarginata, presents another variation. It possesses two visual systems apparently differentiated, not for color discrimination but for use in dim and bright light, like vertebrate rods and cones. The spectral sensitivity of the dark-adapted eye is maximal at about 490 mµ and on light adaptation, whether to blue, red, or white light, is displaced toward shorter wavelengths in what is essentially a reverse Purkinje shift. In all these animals dark adaptation appears to involve two phases: a rapid, hyperbolic fall of log threshold associated probably with visual pigment regeneration, followed by a slow, almost linear fall of log threshold that may be associated with pigment migration.


1980 ◽  
Vol 209 (1175) ◽  
pp. 317-330 ◽  

We measured the visual sensitivity of the conger eel retina by means of its electroretinogram (e.r.g.) and whole nerve responses. The spectral sensitivity of the retina closely corresponded to a prediction based on the density spectrum of the conger visual pigment, measured in situ . The pigment density in the conger eel retina is high, perhaps as high as 1.0. Thus, the predicted spectral sensitivity would be much broader than is observed if the absorption spectrum of the pigment governed the visual sensitivity. The reason why the visual spectral sensitivity corresponds to the density spectrum and not to the absorption spectrum is that the photoreceptors in the conger eye are arranged in tiers and only the inner tier contributes to vision.


Author(s):  
Camilla R. Sharkey ◽  
Jorge Blanco ◽  
Maya M. Leibowitz ◽  
Daniel Pinto-Benito ◽  
Trevor J. Wardill

AbstractDrosophila melanogaster has long been a popular model insect species, due in large part to the availability of genetic tools and is fast becoming the model for insect colour vision. Key to understanding colour reception in Drosophila is in-depth knowledge of spectral inputs and downstream neural processing. While recent studies have sparked renewed interest in colour processing in Drosophila, photoreceptor spectral sensitivity measurements have yet to be carried out in vivo. We have fully characterised the spectral input to the motion and colour vision pathways, and directly measured the effects of spectral modulating factors, screening pigment density and carotenoid-based ocular pigments. All receptor sensitivities had significant shifts in spectral sensitivity compared to previous measurements. Notably, the spectral range of the Rh6 visual pigment is substantially broadened and its peak sensitivity is shifted by 92 nm from 508 to 600 nm. We propose that this deviation can be explained by transmission of long wavelengths through the red screening pigment and by the presence of the blue-absorbing filter in the R7y receptors. Further, we tested direct interactions between photoreceptors and found evidence of interactions between inner and outer receptors, in agreement with previous findings of cross-modulation between receptor outputs in the lamina.


1967 ◽  
Vol 50 (9) ◽  
pp. 2267-2287 ◽  
Author(s):  
Robert M. Chapman ◽  
Abner B. Lall

Electrical responses (ERG) to light flashes of various wavelengths and energies were obtained from the dorsal median ocellus and lateral compound eye of Limulus under dark and chromatic light adaptation. Spectral mechanisms were studied by analyzing (a) response waveforms, e.g. response area, rise, and fall times as functions of amplitude, (b) slopes of amplitude-energy functions, and (c) spectral sensitivity functions obtained by the criterion amplitude method. The data for a single spectral mechanism in the lateral eye are (a) response waveforms independent of wavelength, (b) same slope for response-energy functions at all wavelengths, (c) a spectral sensitivity function with a single maximum near 520 mµ, and (d) spectral sensitivity invariance in chromatic adaptation experiments. The data for two spectral mechanisms in the median ocellus are (a) two waveform characteristics depending on wavelength, (b) slopes of response-energy functions steeper for short than for long wavelengths, (c) two spectral sensitivity peaks (360 and 530–535 mµ) when dark-adapted, and (d) selective depression of either spectral sensitivity peak by appropriate chromatic adaptation. The ocellus is 200–320 times more sensitive to UV than to visible light. Both UV and green spectral sensitivity curves agree with Dartnall's nomogram. The hypothesis is favored that the ocellus contains two visual pigments each in a different type of receptor, rather than (a) various absorption bands of a single visual pigment, (b) single visual pigment and a chromatic mask, or (c) fluorescence. With long duration light stimuli a steady-state level followed the transient peak in the ERG from both types of eyes.


Sign in / Sign up

Export Citation Format

Share Document