Measurement of the Oil Film Thickness Between the Cylinder Liner and the Piston Rings in a Heavy Duty Directly Injected Diesel Engine

1995 ◽  
Author(s):  
Christer Mattsson
1974 ◽  
Vol 188 (1) ◽  
pp. 253-261 ◽  
Author(s):  
G. M. Hamilton ◽  
S. L. Moore

A capacity gauge has been designed for operating in the conditions of a working engine. The method of using it for determining the oil-film thickness and piston-ring profile is described. Oil-film thicknesses in the range 0·4-2·5 μm between the piston rings and the cylinder liner have been observed. Their variation with speed, load and temperature has been measured and it is concluded that their behaviour is essentially hydrodynamic.


1978 ◽  
Vol 20 (6) ◽  
pp. 345-352 ◽  
Author(s):  
S. L. Moore ◽  
G. M. Hamilton

Miniature pressure and film thickness transducers mounted in the cylinder liner of a diesel engine have been used to study the lubrication of piston rings. The method of using the gauges to determine oil starvation in the inlet of the rings is described and results from a working engine are presented. Calculations for both starved and fully flooded rings have been carried out and are compared with the measured results.


1980 ◽  
Vol 194 (1) ◽  
pp. 373-381 ◽  
Author(s):  
S. L. Moore ◽  
G. M. Hamilton

Using capacitance transducers the oil film thickness between the compression ring and the cylinder liner of a diesel engine has been investigated in the region of top dead centre. Results are presented from two engines, one supercharged and the other normally aspirated. Calculations of the film thickness have been carried out and these are compared with the measured results.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Siqi Ma ◽  
Wenbin Chen ◽  
Chengdi Li ◽  
Mei Jin ◽  
Ruoxuan Huang ◽  
...  

This work investigates the effect of convexity position of ring barrel surface on the wear properties and scuffing resistance of the Cr–Al2O3 coated piston rings against with the CuNiCr cast iron cylinder liner. The scuffed surface morphology and elements distribution as well as the oil film edge were analyzed to explore the influencing mechanism of the convexity position on the scuffing resistance. The results show that the convexity offset rate on the barrel surface of the ring has no noticeable influence on both friction coefficient and wear loss near the dead points, but a suitable convexity position will result in the improved scuffing resistance. The shape of the barrel face not only affects the worn area on the ring, but also determines the oil film wedge and pressure distribution, consequently influences the scuffing resistance.


2020 ◽  
pp. 146808742093016
Author(s):  
Onur Biyiklioğlu ◽  
Mustafa Ertunc Tat

Internal combustion engines consume about 90% of fuel refined from crude oil which supplies 30% of the annual global flow of energy. Heavy-duty diesel engines are the primary source of power used in highways, marine, railroads, and power stations. The right coating can improve the tribological properties of cylinder liners and increase the mechanical efficiency of an engine. Also, it can help to extend the maintenance periods, and enhance the reliability of the vehicles. In this research, tribological and economic evaluations were performed for coated and uncoated substrates from a cylinder liner of a heavy-duty diesel engine, aiming to lower friction, wear rate, and maintenance cost. A reciprocating friction test was conducted under dry condition using Wolfram carbide (tungsten carbide) ball applied a 10 N normal load on a ball on disk geometry. The cylinder liner was made of gray cast iron, and the substrates obtained were coated with three different coating materials (Cr3C2/NiCr, NiCr, and Al2O3/TiO2) through the thermal spray and high-velocity oxy-fuel coating process. Tribological evaluations showed that the substrates coded with Al2O3/TiO2 and Cr3C2/NiCr had the lowest friction coefficient and wear rate. The most economical coating was Al2O3/TiO2, being able to supply about 61% lower coefficient of friction and 94% less wear rate relative to the uncoated sample, for the price of one-third of the Cr3C2/NiCr coating and one half of a new gray cast iron cylinder liner.


Author(s):  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Masaaki Takiguchi

Abstract This paper describes that an analysis of oil film thickness on a piston ring of diesel engine. The oil film thickness has been performed by using Reynolds equation and unsteady, two-dimensional (2-D) energy equation with a heat generated from viscous dissipation. The temperature distribution in the oil film is calculated by using the energy equation and the mean oil film temperature is computed. Then the viscosity of oil film is estimated by using the mean oil film temperature. The effect of oil film temperature on the oil film thickness of a piston ring was examined. This model has been verified with published experimental results. Moreover, the heat flow at ring and liner surfaces was examined. As a result, the oil film thickness could be calculated by using the viscosity estimated from the mean oil film temperature and the calculated value is agreement with the measured values.


Sign in / Sign up

Export Citation Format

Share Document