The role of strain rate response in plane strain abrasion of metals

Wear ◽  
1995 ◽  
Vol 181-183 ◽  
pp. 648-657
Author(s):  
S Biswas
Keyword(s):  
Wear ◽  
1995 ◽  
Vol 181-183 ◽  
pp. 648-657 ◽  
Author(s):  
Satish V. Kailas ◽  
S.K. Biswas
Keyword(s):  

1992 ◽  
Vol 59 (3) ◽  
pp. 485-490 ◽  
Author(s):  
P. Tugˇcu

The plane-strain tension test is analyzed numerically for a material with strain and strain-rate hardening characteristics. The effect of the prescribed rate of straining is investigated for an additive logarithmic description of the material strain-rate sensitivity. The dependency to the imposed strain rate so introduced is shown to have a significant effect on several features of the load-elongation curve such as the attainment of the load maximum, the onset of localization, and the overall engineering strain.


1992 ◽  
Vol 114 (2) ◽  
pp. 185-192 ◽  
Author(s):  
R. G. Ross ◽  
L. C. Wen ◽  
G. R. Mon ◽  
E. Jetter

With flexible leaded parts, the solder-joint failure process involves a complex interplay of creep and fatigue mechanisms. To better understand the role of creep in typical multi-hour cyclic loading conditions, a specialized non-linear finite-element creep simulation computer program has been formulated. The numerical algorithm includes the complete part-lead-solder-PWB system, accounting for strain-rate dependence of creep on applied stress and temperature, and the role of the part-lead dimensions and flexibility that determine the total creep deflection (solder strain range) during stress relaxation. The computer program has been used to explore the effects of various solder creep-fatigue parameters such as lead height and stiffness, thermal-cycle test profile, and part/board differential thermal expansion properties. One of the most interesting findings is the strong presence of unidirectional creep-ratcheting that occurs during thermal cycling due to temperature dominated strain-rate effects. To corroborate the solder fatigue model predictions, a number of carefully controlled thermal-cycle tests have been conducted using special bimetallic test boards.


2018 ◽  
Vol 183 ◽  
pp. 02022
Author(s):  
Vincent Grolleau ◽  
Vincent Lafilé ◽  
Christian C. Roth ◽  
Bertrand Galpin ◽  
Laurent Mahéo ◽  
...  

Among all other stress states achievable under plane stress conditions, the lowest ductility is consistently observed for plane strain tension. For static loading conditions, V-bending of small sheet coupons is the most reliable way of characterising the strain to fracture for plane strain tension. Different from conventional notched tension specimens, necking is suppressed during V-bending which results in a remarkably constant stress state all the way until fracture initiation. The present DYMAT talk is concerned with the extension of the V-bending technique from low to high strain rate experiments. A new technique is designed with the help of finite element simulations. It makes use of modified Nakazima specimens that are subjected to V-bending. Irrespective of the loading velocity, plane strain tension conditions are maintained throughout the entire loading history up to fracture initiation. Experiments are performed on specimens extracted from aluminum 2024-T3 and dual phase DP450 steel sheets. The experimental program includes quasi static loading conditions which are achieved on a universal testing machine. In addition, high strain rate experiments are performed using a specially-designed drop tower system. In all experiments, images are acquired with two cameras to determine the surface strain history through stereo Digital Image Correlation (DIC). The experimental observations are discussed in detail and also compared with the numerical simulations to validate the proposed experimental technique


2012 ◽  
Vol 715-716 ◽  
pp. 164-169
Author(s):  
Bradley P. Wynne ◽  
R. Bhattacharya ◽  
Bruce Davis ◽  
W.M. Rainforth

The dynamic recrystallisation (DRX) behaviour of magnesium AZ31 is investigated using a plane strain compression (PSC) testing machine at 450°C. The variables included strain rate, double hit including intermittent anneal and double hits with different strain rate at each hit. The alloy shows higher peak stress and strain with increasing strain rates. Predominant basal texture with different intensities are observed at different strain rates. The annealing treatment between double tests leads to strong basal texture. Reversal of strain rate during double hit results in similar flow curves. This shows that in AZ31 alloy, DRX mechanism is independent of the initial microstructure and only depends on the test condition viz. temperature, strain rate and total equivalent strain.


2018 ◽  
Vol 51 (2) ◽  
pp. 221-226 ◽  
Author(s):  
Yuji Kitamura ◽  
Kiyoka Okada ◽  
Hiroyasu Masunaga ◽  
Masamichi Hikosaka

2022 ◽  
Vol 165 ◽  
pp. 104185
Author(s):  
Zhongpeng Qi ◽  
Liu He ◽  
Fang Wang ◽  
Jin Wang ◽  
Junliang Cheng ◽  
...  

2018 ◽  
Vol 941 ◽  
pp. 1198-1202
Author(s):  
Dong Keun Han ◽  
Min Soo Park ◽  
Han Sang Kwon ◽  
Kwon Hoo Kim

In previous study, it was investigated texture formation behaviour of high-temperature plane strain compression test at 723K, under a strain rate of 5.0. It was found that the main texture component and it was sharpness vary depending on deformation conditions. To clarify the characteristic of texture formation behaviour, it is necessary to investigate at various deformation condition. Therefore, in this study, is investigating the influence or texture formation behaviour and strain, strain rate at 673K. Three kinds of specimens with different initial textures were machined out from a rolled plate having a <0001> texture. The plane strain compression tests were conducted at a temperature 673K, and a strain rate of 5.0, with strain between-0.4 to-1.0. After compression tests, the specimens were immediately quenched in oil. The texture evolution was conducted by the Schulz reflection method using Cu Kα radiation and EBSD. Before the deformation, {0001} of specimen A was accumulated in the center of pole figure. The {0001} of specimen B was accumulated at the RD direction. The {0001} of specimen C was accumulated TD direction. As a result, work softening is observed in all the cases at the true stress – true strain curve for three types of specimens. After deformation, the maximum pole density of increases with increasing strain. In this study, it was found that the stable orientation was (0001)<100> and (0001)<110> during deformation.


Sign in / Sign up

Export Citation Format

Share Document