Analytical review: Host defense mechanisms in protein-energy malnutrition

1976 ◽  
Vol 5 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Steven D. Douglas ◽  
Kurt Schopfer
2016 ◽  
Vol 2016 ◽  
pp. 1-4 ◽  
Author(s):  
Soham Dasgupta ◽  
Ashraf M. Aly

Protein energy malnutrition (PEM) has been rarely documented as a cause of cardiovascular abnormalities, including dilated cardiomyopathy. Selenium is responsible for antioxidant defense mechanisms in cardiomyocytes, and its deficiency in the setting of PEM and disease related malnutrition (DRM) may lead to exacerbation of the dilated cardiomyopathy. We report a rare case of a fourteen-year-old boy who presented with symptoms of congestive heart failure due to DRM and PEM (secondary to chronic starvation) along with severe selenium deficiency. An initial echocardiogram showed severely depressed systolic function consistent with dilated cardiomyopathy. Aggressive nutritional support and replacement of selenium and congestive heart failure medications that included diuretics and ACE inhibitors with the addition of carvedilol led to normalization of the cardiac function within four weeks. He continues to have significant weight gain and is currently completely asymptomatic from a cardiovascular standpoint.


2018 ◽  
Vol 3 (5) ◽  
pp. 79-88
Author(s):  
Abtsam M.F. Badr ◽  
D.A.M. Amer ◽  
M.Y.A. El- Hawary ◽  
A.M.A. Naem

1975 ◽  
Vol 48 (5) ◽  
pp. 706-720 ◽  
Author(s):  
M. Schutte ◽  
R. DiCamelli ◽  
P. Murphy ◽  
M. Sadove ◽  
H. Gewurz

2021 ◽  
Vol 22 (4) ◽  
pp. 1917
Author(s):  
Hiroki Nishikawa ◽  
Hirayuki Enomoto ◽  
Shuhei Nishiguchi ◽  
Hiroko Iijima

The picture of chronic liver diseases (CLDs) has changed considerably in recent years. One of them is the increase of non-alcoholic fatty liver disease. More and more CLD patients, even those with liver cirrhosis (LC), tend to be presenting with obesity these days. The annual rate of muscle loss increases with worsening liver reserve, and thus LC patients are more likely to complicate with sarcopenia. LC is also characterized by protein-energy malnutrition (PEM). Since the PEM in LC can be invariable, the patients probably present with sarcopenic obesity (Sa-O), which involves both sarcopenia and obesity. Currently, there is no mention of Sa-O in the guidelines; however, the rapidly increasing prevalence and poorer clinical consequences of Sa-O are recognized as an important public health problem, and the diagnostic value of Sa-O is expected to increase in the future. Sa-O involves a complex interplay of physiological mechanisms, including increased inflammatory cytokines, oxidative stress, insulin resistance, hormonal disorders, and decline of physical activity. The pathogenesis of Sa-O in LC is diverse, with a lot of perturbations in the muscle–liver–adipose tissue axis. Here, we overview the current knowledge of Sa-O, especially focusing on LC.


2021 ◽  
Vol 22 (5) ◽  
pp. 2566 ◽  
Author(s):  
Barbara Ruaro ◽  
Francesco Salton ◽  
Luca Braga ◽  
Barbara Wade ◽  
Paola Confalonieri ◽  
...  

Alveolar type II (ATII) cells are a key structure of the distal lung epithelium, where they exert their innate immune response and serve as progenitors of alveolar type I (ATI) cells, contributing to alveolar epithelial repair and regeneration. In the healthy lung, ATII cells coordinate the host defense mechanisms, not only generating a restrictive alveolar epithelial barrier, but also orchestrating host defense mechanisms and secreting surfactant proteins, which are important in lung protection against pathogen exposure. Moreover, surfactant proteins help to maintain homeostasis in the distal lung and reduce surface tension at the pulmonary air–liquid interface, thereby preventing atelectasis and reducing the work of breathing. ATII cells may also contribute to the fibroproliferative reaction by secreting growth factors and proinflammatory molecules after damage. Indeed, various acute and chronic diseases are associated with intensive inflammation. These include oedema, acute respiratory distress syndrome, fibrosis and numerous interstitial lung diseases, and are characterized by hyperplastic ATII cells which are considered an essential part of the epithelialization process and, consequently, wound healing. The aim of this review is that of revising the physiologic and pathologic role ATII cells play in pulmonary diseases, as, despite what has been learnt in the last few decades of research, the origin, phenotypic regulation and crosstalk of these cells still remain, in part, a mystery.


Sign in / Sign up

Export Citation Format

Share Document